Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Public Health ; 24(1): 973, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582850

ABSTRACT

BACKGROUND: European epidemic intelligence (EI) systems receive vast amounts of information and data on disease outbreaks and potential health threats. The quantity and variety of available data sources for EI, as well as the available methods to manage and analyse these data sources, are constantly increasing. Our aim was to identify the difficulties encountered in this context and which innovations, according to EI practitioners, could improve the detection, monitoring and analysis of disease outbreaks and the emergence of new pathogens. METHODS: We conducted a qualitative study to identify the need for innovation expressed by 33 EI practitioners of national public health and animal health agencies in five European countries and at the European Centre for Disease Prevention and Control (ECDC). We adopted a stepwise approach to identify the EI stakeholders, to understand the problems they faced concerning their EI activities, and to validate and further define with practitioners the problems to address and the most adapted solutions to their work conditions. We characterized their EI activities, professional logics, and desired changes in their activities using NvivoⓇ software. RESULTS: Our analysis highlights that EI practitioners wished to collectively review their EI strategy to enhance their preparedness for emerging infectious diseases, adapt their routines to manage an increasing amount of data and have methodological support for cross-sectoral analysis. Practitioners were in demand of timely, validated and standardized data acquisition processes by text mining of various sources; better validated dataflows respecting the data protection rules; and more interoperable data with homogeneous quality levels and standardized covariate sets for epidemiological assessments of national EI. The set of solutions identified to facilitate risk detection and risk assessment included visualization, text mining, and predefined analytical tools combined with methodological guidance. Practitioners also highlighted their preference for partial rather than full automation of analyses to maintain control over the data and inputs and to adapt parameters to versatile objectives and characteristics. CONCLUSIONS: The study showed that the set of solutions needed by practitioners had to be based on holistic and integrated approaches for monitoring zoonosis and antimicrobial resistance and on harmonization between agencies and sectors while maintaining flexibility in the choice of tools and methods. The technical requirements should be defined in detail by iterative exchanges with EI practitioners and decision-makers.


Subject(s)
Digital Health , Disease Outbreaks , Animals , Humans , Europe/epidemiology , Disease Outbreaks/prevention & control , Public Health , Intelligence
2.
BMC Public Health ; 23(1): 1488, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542208

ABSTRACT

Epidemic Intelligence (EI) encompasses all activities related to early identification, verification, analysis, assessment, and investigation of health threats. It integrates an indicator-based (IBS) component using systematically collected surveillance data, and an event-based component (EBS), using non-official, non-verified, non-structured data from multiple sources. We described current EI practices in Europe by conducting a survey of national Public Health (PH) and Animal Health (AH) agencies. We included generic questions on the structure, mandate and scope of the institute, on the existence and coordination of EI activities, followed by a section where respondents provided a description of EI activities for three diseases out of seven disease models. Out of 81 gatekeeper agencies from 41 countries contacted, 34 agencies (42%) from 26 (63%) different countries responded, out of which, 32 conducted EI activities. Less than half (15/32; 47%) had teams dedicated to EI activities and 56% (18/34) had Standard Operating Procedures (SOPs) in place. On a national level, a combination of IBS and EBS was the most common data source. Most respondents monitored the epidemiological situation in bordering countries, the rest of Europe and the world. EI systems were heterogeneous across countries and diseases. National IBS activities strongly relied on mandatory laboratory-based surveillance systems. The collection, analysis and interpretation of IBS information was performed manually for most disease models. Depending on the disease, some respondents did not have any EBS activity. Most respondents conducted signal assessment manually through expert review. Cross-sectoral collaboration was heterogeneous. More than half of the responding institutes collaborated on various levels (data sharing, communication, etc.) with neighbouring countries and/or international structures, across most disease models. Our findings emphasise a notable engagement in EI activities across PH and AH institutes of Europe, but opportunities exist for better integration, standardisation, and automatization of these efforts. A strong reliance on traditional IBS and laboratory-based surveillance systems, emphasises the key role of in-country laboratories networks. EI activities may benefit particularly from investments in cross-border collaboration, the development of methods that can automatise signal assessment in both IBS and EBS data, as well as further investments in the collection of EBS data beyond scientific literature and mainstream media.


Subject(s)
Disease Outbreaks , Animals , Humans , Cross-Sectional Studies , Disease Outbreaks/prevention & control , Intelligence , Public Health , Surveys and Questionnaires
3.
PLoS Negl Trop Dis ; 8(8): e3112, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25144776

ABSTRACT

BACKGROUND: In 2005, the Government of Senegal embarked on a campaign to eliminate a Glossina palpalis gambiensis population from the Niayes area (∼ 1000 km(2)) under the umbrella of the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). The project was considered an ecologically sound approach to intensify cattle production. The elimination strategy includes a suppression phase using insecticide impregnated targets and cattle, and an elimination phase using the sterile insect technique, necessary to eliminate tsetse in this area. METHODOLOGY/PRINCIPAL FINDINGS: Three main cattle farming systems were identified: a traditional system using trypanotolerant cattle and two "improved" systems using more productive cattle breeds focusing on milk and meat production. In improved farming systems herd size was 45% lower and annual cattle sales were €250 (s.d. 513) per head as compared to €74 (s.d. 38) per head in traditional farming systems (p<10-3). Tsetse distribution significantly impacted the occurrence of these farming systems (p = 0.001), with 34% (s.d. 4%) and 6% (s.d. 4%) of improved systems in the tsetse-free and tsetse-infested areas, respectively. We calculated the potential increases of cattle sales as a result of tsetse elimination considering two scenarios, i.e. a conservative scenario with a 2% annual replacement rate from traditional to improved systems after elimination, and a more realistic scenario with an increased replacement rate of 10% five years after elimination. The final annual increase of cattle sales was estimated at ∼ €2800/km(2) for a total cost of the elimination campaign reaching ∼ €6400/km(2). CONCLUSION/SIGNIFICANCE: Despite its high cost, the benefit-cost analysis indicated that the project was highly cost-effective, with Internal Rates of Return (IRR) of 9.8% and 19.1% and payback periods of 18 and 13 years for the two scenarios, respectively. In addition to an increase in farmers' income, the benefits of tsetse elimination include a reduction of grazing pressure on the ecosystems.


Subject(s)
Cost-Benefit Analysis , Insect Control , Trypanosomiasis, African , Tsetse Flies , Animals , Cattle , Insect Control/economics , Insect Control/methods , Insect Control/statistics & numerical data , Senegal/epidemiology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/transmission
4.
Trends Parasitol ; 29(11): 519-22, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24012356

ABSTRACT

Tsetse eradication is impossible in many parts of Africa given environmental, political, and economic circumstances. Animal African trypanosomosis (AAT) control then relies on implementation of local, integrated control strategies by communities or farmers that must take into account the eco-epidemiological context and the cattle rearing system to be sustainable.


Subject(s)
Agriculture , Cattle Diseases/prevention & control , Trypanosomiasis, African/veterinary , Africa , Animals , Cattle , Insect Control , Trypanosomiasis, African/prevention & control , Tsetse Flies/physiology
5.
PLoS Negl Trop Dis ; 5(8): e1276, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21858241

ABSTRACT

BACKGROUND: Restricted application of insecticides to cattle is a cheap and safe farmer-based method to control tsetse. In Western Africa, it is applied using a footbath, mainly to control nagana and the tick Amblyomma variegatum. In Eastern and Southern Africa, it might help controlling the human disease, i.e., Rhodesian sleeping sickness as well. The efficiency of this new control method against ticks, tsetse and trypanosomoses has been demonstrated earlier. The invention, co-built by researchers and farmers ten years ago, became an innovation in Burkina Faso through its diffusion by two development projects. METHODOLOGY/PRINCIPAL FINDINGS: In this research, we studied the process and level of adoption in 72 farmers inhabiting the peri-urban areas of Ouagadougou and Bobo-Dioulasso. Variables describing the livestock farming system, the implementation and perception of the method and the knowledge of the epidemiological system were used to discriminate three clusters of cattle farmers that were then compared using indicators of adoption. The first cluster corresponded to modern farmers who adopted the technique very well. The more traditional farmers were discriminated into two clusters, one of which showed a good adoption rate, whereas the second failed to adopt the method. The economic benefit and the farmers' knowledge of the epidemiological system appeared to have a low impact on the early adoption process whereas some modern practices, as well as social factors appeared critical. The quality of technical support provided to the farmers had also a great influence. Cattle farmers' innovation-risk appraisal was analyzed using Rogers' adoption criteria which highlighted individual variations in risk perceptions and benefits, as well as the prominent role of the socio-technical network of cattle farmers. CONCLUSIONS/SIGNIFICANCE: Results are discussed to highlight the factors that should be taken into consideration, to move discoveries from bench to field for an improved control of trypanosomoses vectors.


Subject(s)
Cattle Diseases/prevention & control , Ectoparasitic Infestations/prevention & control , Health Knowledge, Attitudes, Practice , Insect Control/methods , Insecticides/administration & dosage , Patient Acceptance of Health Care/statistics & numerical data , Trypanosomiasis, African/prevention & control , Agriculture , Animals , Burkina Faso , Cattle , Humans , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...