Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028363

ABSTRACT

Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.

2.
Phys Rev Lett ; 130(26): 268201, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37450798

ABSTRACT

The rigidity transition occurs when, as the density of microscopic components is increased, a disordered medium becomes able to transmit and ensure macroscopic mechanical stability, owing to the appearance of a space-spanning rigid connected component, or cluster. As a second-order phase transition it exhibits a scale invariant critical point, at which the rigid clusters are random fractals. We show, using numerical analysis, that these clusters are also conformally invariant, and we use conformal field theory to predict the form of universal finite-size effects. Furthermore, although connectivity and rigidity percolation are usually thought to be of fundamentally different natures, we provide evidence of unexpected similarities between the statistical properties of their random clusters at criticality. Our work opens a new research avenue through the application of the powerful 2D conformal field theory tools to understand the critical behavior of a wide range of physical and biological materials exhibiting such a mechanical transition.


Subject(s)
Fractals , Molecular Conformation , Phase Transition
3.
Soft Matter ; 16(18): 4414-4421, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32337525

ABSTRACT

We present a detailed numerical study of multi-component colloidal gels interacting sterically and obtained by arrested phase separation. Under deformation, we found that the interplay between the different intertwined networks is key. Increasing the number of components leads to softer solids that can accommodate progressively larger strains before yielding. The simulations highlight how this is the direct consequence of the purely repulsive interactions between the different components, which end up enhancing the linear response of the material. Our work provides new insight into mechanisms at play for controlling the material properties and opens a road to new design principles for soft composite solids.

4.
Phys Rev Lett ; 123(5): 058001, 2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31491284

ABSTRACT

Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as constraints or components are added. Here we discuss RP with structural correlations, an effect ignored in classical theories albeit relevant to many liquid-to-amorphous-solid transitions, such as colloidal gelation, which are due to attractive interactions and aggregation. Using a lattice model, we show that structural correlations shift RP to lower volume fractions. Through molecular dynamics simulations, we show that increasing attraction in colloidal gelation increases structural correlation and thus lowers the RP transition, agreeing with experiments. Hence, the emergence of rigidity at colloidal gelation can be understood as a RP transition, but occurs at volume fractions far below values predicted by the classical RP, due to attractive interactions which induce structural correlation.

5.
Proc Natl Acad Sci U S A ; 115(7): 1517-1522, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29378953

ABSTRACT

α-Actinin-4 (ACTN4) bundles and cross-links actin filaments to confer mechanical resilience to the reconstituted actin network. How this resilience is built and dynamically regulated in the podocyte, and the cause of its failure in ACTN4 mutation-associated focal segmental glomerulosclerosis (FSGS), remains poorly defined. Using primary podocytes isolated from wild-type (WT) and FSGS-causing point mutant Actn4 knockin mice, we report responses to periodic stretch. While WT cells largely maintained their F-actin cytoskeleton and contraction, mutant cells developed extensive and irrecoverable reductions in these same properties. This difference was attributable to both actin material changes and a more spatially correlated intracellular stress in mutant cells. When stretched cells were further challenged using a cell adhesion assay, mutant cells were more likely to detach. Together, these data suggest a mechanism for mutant podocyte dysfunction and loss in FSGS-it is a direct consequence of mechanical responses of a cytoskeleton that is brittle.


Subject(s)
Actinin/genetics , Podocytes/pathology , Point Mutation , Actinin/metabolism , Animals , Cell Adhesion , Cytoskeleton/metabolism , Female , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/pathology , Humans , Male , Mice, Transgenic
6.
Langmuir ; 34(3): 773-781, 2018 01 23.
Article in English | MEDLINE | ID: mdl-28977748

ABSTRACT

The structural complexity of soft gels is at the origin of a versatile mechanical response that allows for large deformation, controlled elastic recovery, and toughness in the same material. A limit to exploiting the potential of such materials is the insufficient fundamental understanding of the microstructural origin of the bulk mechanical properties. Here we investigate the role of the network topology in a model gel through 3D numerical simulations. Our study links the topology of the network organization in space to its nonlinear rheological response preceding yielding and damage: our analysis elucidates how the network connectivity alone could be used to modify the gel mechanics at large strains, from strain-softening to hardening and even to a brittle response. These findings provide new insight for smart material design and for understanding the nontrivial mechanical response of a potentially wide range of technologically relevant materials.

7.
Nat Commun ; 8: 15846, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28635964

ABSTRACT

Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.

8.
Eur Phys J E Soft Matter ; 38(11): 125, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26614496

ABSTRACT

The aim of this article is to discuss the concepts of non-local rheology and fluidity, recently introduced to describe dense granular flows. We review and compare various approaches based on different constitutive relations and choices for the fluidity parameter, focusing on the kinetic elasto-plastic model introduced by Bocquet et al. (Phys. Rev. Lett 103, 036001 (2009)) for soft matter, and adapted for granular matter by Kamrin et al. (Phys. Rev. Lett. 108, 178301 (2012)), and the gradient expansion of the local rheology µ(I) that we have proposed (Phys. Rev. Lett. 111, 238301 (2013)). We emphasise that, to discriminate between these approaches, one has to go beyond the predictions derived from linearisation around a uniform stress profile, such as that obtained in a simple shear cell. We argue that future tests can be based on the nature of the chosen fluidity parameter, and the related boundary conditions, as well as the hypothesis made to derive the models and the dynamical mechanisms underlying their dynamics.

9.
Phys Rev Lett ; 111(23): 238301, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476308

ABSTRACT

The rheology of dense granular flows is studied numerically in a shear cell controlled at constant pressure and shear stress, confined between two granular shear flows. We show that a liquid state can be achieved even far below the yield stress, whose flow can be described with the same rheology as above the yield stress. A nonlocal constitutive relation is derived from dimensional analysis through a gradient expansion and calibrated using the spatial relaxation of velocity profiles observed under homogeneous stresses. Both for frictional and frictionless grains, the relaxation length is found to diverge as the inverse square root of the distance to the yield point, on both sides of that point.

SELECTION OF CITATIONS
SEARCH DETAIL