Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Ann Neurol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721781

ABSTRACT

OBJECTIVE: Bradykinesia and rigidity are considered closely related motor signs in Parkinson disease (PD), but recent neurophysiological findings suggest distinct pathophysiological mechanisms. This study aims to examine and compare longitudinal changes in bradykinesia and rigidity in PD patients treated with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: In this retrospective cohort study, the clinical progression of appendicular and axial bradykinesia and rigidity was assessed up to 15 years after STN-DBS in the best treatment conditions (ON medication and ON stimulation). The severity of bradykinesia and rigidity was examined using ad hoc composite scores from specific subitems of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III). Short- and long-term predictors of bradykinesia and rigidity were analyzed through linear regression analysis, considering various preoperative demographic and clinical data, including disease duration and severity, phenotype, motor and cognitive scores (eg, frontal score), and medication. RESULTS: A total of 301 patients were examined before and 1 year after surgery. Among them, 101 and 56 individuals were also evaluated at 10-year and 15-year follow-ups, respectively. Bradykinesia significantly worsened after surgery, especially in appendicular segments (p < 0.001). Conversely, rigidity showed sustained benefit, with unchanged clinical scores compared to preoperative assessment (p > 0.05). Preoperative motor disability (eg, composite scores from the UPDRS-III) predicted short- and long-term outcomes for both bradykinesia and rigidity (p < 0.01). Executive dysfunction was specifically linked to bradykinesia but not to rigidity (p < 0.05). INTERPRETATION: Bradykinesia and rigidity show long-term divergent progression in PD following STN-DBS and are associated with independent clinical factors, supporting the hypothesis of partially distinct pathophysiology. ANN NEUROL 2024.

2.
Neurol Sci ; 45(2): 565-572, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37700176

ABSTRACT

BACKGROUND: Bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) is standard of care for Parkinson's disease (PD) patients and a correct lead placement is crucial to obtain good clinical outcomes. Evidence demonstrating the targeting accuracy of the frameless technique for DBS, along with the advantages for patients and clinicians, is solid, while data reporting long-term clinical outcomes for PD patients are still lacking. OBJECTIVES: The study aims to assess the clinical safety and efficacy of frameless bilateral STN-DBS in PD patients at 5 years from surgery. METHODS: Consecutive PD patients undergoing bilateral STN-DBS with a frameless system were included in this single-center retrospective study. Clinical features, including the Unified Parkinson's Disease Rating Scale (UPDRS) in its total motor score and axial sub-scores, and pharmacological regimen were assessed at baseline, 1 year, 3 years, and 5 years after surgery. The adverse events related to the procedure, stimulation, or the presence of the hardware were systematically collected. RESULTS: Forty-one PD patients undergone bilateral STN-DBS implantation were included in the study and fifteen patients already completed the 5-year observation. No complications occurred during surgery and the perioperative phase, and no unexpected serious adverse event occurred during the entire follow-up period. At 5 years from surgery, there was a sustained motor efficacy of STN stimulation: STN-DBS significantly improved the off-stim UPDRS III score at 5 years by 37.6% (P < 0.001), while the dopaminergic medications remained significantly reduced compared to baseline (- 21.6% versus baseline LEDD; P = 0.036). CONCLUSIONS: Our data support the use of the frameless system for STN-DBS in PD patients, as a safe and well-tolerated technique, with long-term clinical benefits and persistent motor efficacy at 5 years from the surgery.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/drug therapy , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/methods , Retrospective Studies , Treatment Outcome , Subthalamic Nucleus/surgery
3.
Neurobiol Dis ; 190: 106371, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061398

ABSTRACT

OBJECTIVE: Neurodegeneration and neuroinflammation are two intertwined mechanisms contributing to the pathophysiology of Parkinson's disease. Whether circulating biomarkers reflecting those two processes differ according to disease duration remains to be established. The present study was conducted to characterize the biomarkers individuals with PD with short (≤5 years) or long disease duration (>5 years). METHODS: We consecutively enrolled 104 patients with Parkinson's disease and evaluated them using validated clinical scales (MDS-UPDRS, Hoehn and Yahr staging, MMSE). Serum samples were assayed for the following biomarkers: neurofilament light chain (NfL), brain-derived neurotrophic factor (BDNF), interleukin (IL-) 1ß, 4, 5, 6, 10, 17, interferon-γ, and tumor necrosis factor α. RESULTS: Mean age of participants was 66.0 ± 9.6 years and 45 (34%) were women. The average disease duration was 8 ± 5 years (range 1 to 19 years). Patients with short disease duration (≤ 5 years) showed a pro-inflammatory profile, with significantly higher levels of pro-inflammatory IL-1ß and lower concentrations of IL-5, IL-10 and IL-17 (p < 0.05). NfL serum levels showed a positive correlation with disease duration and age (respectively rho = 0.248, p = 0.014 and rho = 0.559, p < 0.001) while an opposite pattern was detected for BDNF (respectively rho -0,187, p = 0.034 and rho = -0.245, p = 0.014). CONCLUSIONS: Our findings suggest that a pro-inflammatory status may be observed in PD patients in the early phases of the disease, independently from age.


Subject(s)
Cytokines , Parkinson Disease , Humans , Female , Middle Aged , Aged , Male , Brain-Derived Neurotrophic Factor , Tumor Necrosis Factor-alpha , Biomarkers , Interleukin-1beta
4.
Prog Neurobiol ; 232: 102548, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040324

ABSTRACT

Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Levodopa/adverse effects , Antiparkinson Agents/adverse effects , Transcranial Direct Current Stimulation/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/etiology , Parkinson Disease/drug therapy , Parkinson Disease/complications , Neuronal Plasticity/physiology
5.
Front Neurol ; 14: 1267360, 2023.
Article in English | MEDLINE | ID: mdl-37928137

ABSTRACT

Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) can exert relevant effects on the voice of patients with Parkinson's disease (PD). In this study, we used artificial intelligence to objectively analyze the voices of PD patients with STN-DBS. Materials and methods: In a cross-sectional study, we enrolled 108 controls and 101 patients with PD. The cohort of PD was divided into two groups: the first group included 50 patients with STN-DBS, and the second group included 51 patients receiving the best medical treatment. The voices were clinically evaluated using the Unified Parkinson's Disease Rating Scale part-III subitem for voice (UPDRS-III-v). We recorded and then analyzed voices using specific machine-learning algorithms. The likelihood ratio (LR) was also calculated as an objective measure for clinical-instrumental correlations. Results: Clinically, voice impairment was greater in STN-DBS patients than in those who received oral treatment. Using machine learning, we objectively and accurately distinguished between the voices of STN-DBS patients and those under oral treatments. We also found significant clinical-instrumental correlations since the greater the LRs, the higher the UPDRS-III-v scores. Discussion: STN-DBS deteriorates speech in patients with PD, as objectively demonstrated by machine-learning voice analysis.

6.
Neuromodulation ; 26(8): 1724-1732, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36774326

ABSTRACT

BACKGROUND: Directional deep brain stimulation (DBS) leads allow a fine-tuning control of the stimulation field, however, this new technology could increase the DBS programming time because of the higher number of the possible combinations used in directional DBS than in standard nondirectional electrodes. Neuroimaging leads localization techniques and local field potentials (LFPs) recorded from DBS electrodes implanted in basal ganglia are among the most studied biomarkers for DBS programing. OBJECTIVE: This study aimed to evaluate whether intraoperative LFPs beta power and neuroimaging reconstructions correlate with contact selection in clinical programming of DBS in patients with Parkinson disease (PD). MATERIALS AND METHODS: In this retrospective study, routine intraoperative LFPs recorded from all contacts in the subthalamic nucleus (STN) of 14 patients with PD were analyzed to calculate the beta band power for each contact. Neuroimaging reconstruction obtained through Brainlab Elements Planning software detected contacts localized within the STN. Clinical DBS programming contact scheme data were collected after one year from the implant. Statistical analysis evaluated the diagnostic performance of LFPs beta band power and neuroimaging data for identification of the contacts selected with clinical programming. We evaluated whether the most effective contacts identified based on the clinical response after one year from implant were also those with the highest level of beta activity and localized within the STN in neuroimaging reconstruction. RESULTS: LFPs beta power showed a sensitivity of 67%, a negative predictive value (NPV) of 84%, a diagnostic odds ratio (DOR) of 2.7 in predicting the most effective contacts as evaluated through the clinical response. Neuroimaging reconstructions showed a sensitivity of 62%, a NPV of 77%, a DOR of 1.20 for contact effectivity prediction. The combined use of the two methods showed a sensitivity of 87%, a NPV of 87%, a DOR of 2.7 for predicting the clinically more effective contacts. CONCLUSIONS: The combined use of LFPs beta power and neuroimaging localization and segmentations predict which are the most effective contacts as selected on the basis of clinical programming after one year from implant of DBS. The use of predictors in contact selection could guide clinical programming and reduce time needed for it.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Parkinson Disease/surgery , Retrospective Studies , Deep Brain Stimulation/methods , Subthalamic Nucleus/diagnostic imaging , Subthalamic Nucleus/surgery , Subthalamic Nucleus/physiology , Neuroimaging
7.
Expert Rev Neurother ; 22(9): 789-803, 2022 09.
Article in English | MEDLINE | ID: mdl-36228575

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) is a life-changing treatment for patients with Parkinson's disease (PD) and gives the unique opportunity to directly explore how basal ganglia work. Despite the rapid technological innovation of the last years, the untapped potential of DBS is still high. AREAS COVERED: This review summarizes the developments in the mechanistic understanding of DBS and the potential clinical applications of cutting-edge technological advances. Rather than a univocal local mechanism, DBS exerts its therapeutic effects through several multimodal mechanisms and involving both local and network-wide structures, although crucial questions remain unexplained. Nonetheless, new insights in mechanistic understanding of DBS in PD have provided solid bases for advances in preoperative selection phase, prediction of motor and non-motor outcomes, leads placement and postoperative stimulation programming. EXPERT OPINION: DBS has not only strong evidence of clinical effectiveness in PD treatment but technological advancements are revamping its role of neuromodulation of brain circuits and key to better understanding PD pathophysiology. In the next few years, the worldwide use of new technologies in clinical practice will provide large data to elucidate their role and to expand their applications for PD patients, providing useful insights to personalize DBS treatment and follow-up.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/therapy , Basal Ganglia , Treatment Outcome
8.
NPJ Parkinsons Dis ; 8(1): 121, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153351

ABSTRACT

In this retrospective study, we longitudinally analyzed axial impairment and falls in people with Parkinson's disease (PD) and subthalamic nucleus deep brain stimulation (STN-DBS). Axial scores and falling frequency were examined at baseline, and 1, 10, and 15 years after surgery. Preoperative demographic and clinical data, including PD duration and severity, phenotype, motor and cognitive scales, medications, and vascular changes on neuroimaging were examined as possible risk factors through Kaplan-Meier and Cox regression analyses. Of 302 individuals examined before and at 1 year after surgery, 102 and 57 were available also at 10 and 15 years of follow-up, respectively. Axial scores were similar at baseline and at 1 year but worsened at 10 and 15 years. The prevalence rate of frequent fallers progressively increased from baseline to 15 years. Preoperative axial scores, frontal dysfunction and age at PD onset were risk factors for axial impairment progression after surgery. Axial scores, akinetic/rigid phenotype, age at disease onset and disease duration at surgery predicted frequent falls. Overall, axial signs progressively worsened over the long-term period following STN-DBS, likely related to the progression of PD, especially in a subgroup of subjects with specific risk factors.

9.
Front Hum Neurosci ; 16: 931858, 2022.
Article in English | MEDLINE | ID: mdl-35799771

ABSTRACT

Background: In Parkinson's disease (PD), the side of motor symptoms onset may influence disease progression, with a faster motor symptom progression in patients with left side lateralization. Moreover, worse neuropsychological outcomes after subthalamic nucleus deep brain stimulation (STN-DBS) have been described in patients with predominantly left-sided motor symptoms. The objective of this study was to evaluate if the body side of motor symptoms onset may predict motor outcome of bilateral STN-DBS. Methods: This retrospective study included all consecutive PD patients treated with bilateral STN-DBS at Grenoble University Hospital from 1993 to 2015. Demographic, clinical and neuroimaging data were collected before (baseline condition) and 1 year after surgery (follow-up condition). The predictive factors of motor outcome at one-year follow-up, measured by the percentage change in the MDS-UPDRS-III score, were evaluated through univariate and multivariate linear regression analysis. Results: A total of 233 patients were included with one-year follow-up after surgery [143 males (61.40%); 121 (51.90 %) right body onset; 112 (48.10%) left body onset; mean age at surgery, 55.31 ± 8.44 years; mean disease duration, 11.61 ± 3.87]. Multivariate linear regression analysis showed that the left side of motor symptoms onset did not predict motor outcome (ß = 0.093, 95% CI = -1.967 to 11.497, p = 0.164). Conclusions: In this retrospective study, the body side of motor symptoms onset did not significantly influence the one-year motor outcome in a large cohort of PD patients treated with bilateral STN-DBS.

10.
Biomolecules ; 12(7)2022 07 11.
Article in English | MEDLINE | ID: mdl-35883526

ABSTRACT

A few cases of parkinsonism linked to COVID-19 infection have been reported so far, raising the possibility of a post-viral parkinsonian syndrome. The objective of this review is to summarize the clinical, biological, and neuroimaging features of published cases describing COVID-19-related parkinsonism and to discuss the possible pathophysiological mechanisms. A comprehensive literature search was performed using NCBI's PubMed database and standardized search terms. Thirteen cases of COVID-19-related parkinsonism were included (7 males; mean age: 51 years ± 14.51, range 31-73). Patients were classified based on the possible mechanisms of post-COVID-19 parkinsonism: extensive inflammation or hypoxic brain injury within the context of encephalopathy (n = 5); unmasking of underlying still non-symptomatic Parkinson's Disease (PD) (n = 5), and structural and functional basal ganglia damage (n = 3). The various clinical scenarios show different outcomes and responses to dopaminergic treatment. Different mechanisms may play a role, including vascular damage, neuroinflammation, SARS-CoV-2 neuroinvasive potential, and the impact of SARS-CoV-2 on α-synuclein. Our results confirm that the appearance of parkinsonism during or immediately after COVID-19 infection represents a very rare event. Future long-term observational studies are needed to evaluate the possible role of SARS-CoV-2 infection as a trigger for the development of PD in the long term.


Subject(s)
COVID-19 , Parkinson Disease , Parkinsonian Disorders , COVID-19/complications , Humans , Male , Middle Aged , Parkinson Disease/complications , SARS-CoV-2
11.
NPJ Parkinsons Dis ; 8(1): 85, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768423

ABSTRACT

The aims of this study were to assess the incidence rate and risk factors for sialorrhea in the long-term follow-up in a cohort of 132 patients with advanced Parkinson's disease [88 with deep brain stimulation (DBS) and 44 on medical treatment]. The incidence rate of sialorrhea did not differ between the two groups; male sex, Hoehn and Yahr stage and dysphagia resulted risk factors for sialorrhea. These findings indicate that DBS does not increase the risk of developing sialorrhea.

12.
Handb Clin Neurol ; 184: 167-184, 2022.
Article in English | MEDLINE | ID: mdl-35034732

ABSTRACT

l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.


Subject(s)
Dyskinesias , Parkinson Disease , Antiparkinson Agents/adverse effects , Corpus Striatum , Epigenesis, Genetic , Humans , Levodopa/adverse effects , Parkinson Disease/drug therapy , Parkinson Disease/genetics
14.
Neurology ; 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078713

ABSTRACT

OBJECTIVE: To evaluate the effects of deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson disease (PD) patients on motor complications beyond 15 years after surgery. METHODS: Data about motor complications, quality of life (QoL), activities of daily living, the UPDRS motor scores, dopaminergic treatment, stimulation parameters, and side effects of STN-DBS were retrospectively retrieved and compared between before surgery, at 1 year and beyond 15 years after bilateral STN-DBS. RESULTS: Fifty-one patients with 17.06 ± 2.18 years STN-DBS follow-up were recruited. Compared to baseline, the time spent with dyskinesia and the time spent in the off state were reduced by 75% (p<0.001) and by 58.7% (p<0.001), respectively. Moreover, dopaminergic drugs were reduced by 50.6% (p<0.001). The PDQL total score, and the emotional function and social function domains improved of 13.8% (p=0.005), 13.6% (p=0.01) and 29.9% (p<0.001), respectively. Few and mostly manageable device-related adverse events were observed during the follow-up. CONCLUSIONS: STN-DBS is still effective beyond 15 years from the intervention, notably with significant improvement in motor complications and stable reduction of dopaminergic drugs. Furthermore, despite the natural continuous progression of PD with worsening of levodopa-resistant motor and non-motor symptoms over the years, STN-DBS patients could maintain an improvement in QoL. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that, for patients with PD, STN-DBS remains effective at treating motor complications 15 years after surgery.

15.
Brain Sci ; 11(4)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810277

ABSTRACT

Previous investigations have reported on the motor benefits and safety of chronic extradural motor cortex stimulation (EMCS) for patients with Parkinson's disease (PD), but studies addressing the long-term clinical outcome are still lacking. In this study, nine consecutive PD patients who underwent EMCS were prospectively recruited, with a mean follow-up time of 5.1 ± 2.5 years. As compared to the preoperatory baseline, the Unified Parkinson's Disease Rating Scale (UPDRS)-III in the off-medication condition significantly decreased by 13.8% at 12 months, 16.1% at 18 months, 18.4% at 24 months, 21% at 36 months, 15.6% at 60 months, and 8.6% at 72 months. The UPDRS-IV decreased by 30.8% at 12 months, 22.1% at 24 months, 25% at 60 months, and 36.5% at 72 months. Dopaminergic therapy showed a progressive reduction, significant at 60 months (11.8%). Quality of life improved by 18.0% at 12 months, and 22.4% at 60 months. No surgical complication, cognitive or behavioral change occurred. The only adverse event reported was an infection of the implantable pulse generator pocket. Even in the long-term follow-up, EMCS was shown to be a safe and effective treatment option in PD patients, resulting in improvements in motor symptoms and quality of life, and reductions in motor complications and dopaminergic therapy.

16.
J Pers Med ; 11(4)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918214

ABSTRACT

Personalized Medicine (PM) has shifted the traditional top-down approach to medicine based on the identification of single etiological factors to explain diseases, which was not suitable for explaining complex conditions. The concept of PM assumes several interpretations in the literature, with particular regards to Genetic and Genomic Medicine. Despite the fact that some disease-modifying genes affect disease expression and progression, many complex conditions cannot be understood through only this lens, especially when other lifestyle factors can play a crucial role (such as the environment, emotions, nutrition, etc.). Personalizing clinical phenotyping becomes a challenge when different pathophysiological mechanisms underlie the same manifestation. Brain disorders, cardiovascular and gastroenterological diseases can be paradigmatic examples. Experiences on the field of Fondazione Policlinico Gemelli in Rome (a research hospital recognized by the Italian Ministry of Health as national leader in "Personalized Medicine" and "Innovative Biomedical Technologies") could help understanding which techniques and tools are the most performing to develop potential clinical phenotypes personalization. The connection between practical experiences and scientific literature highlights how this potential can be reached towards Systems Medicine using Artificial Intelligence tools.

17.
Genes (Basel) ; 12(3)2021 02 26.
Article in English | MEDLINE | ID: mdl-33652783

ABSTRACT

Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis, progressive degeneration of the basal ganglia and neuromuscular features with characteristic persistent hyperCKemia. The main NA syndromes include autosomal recessive chorea-acanthocytosis (ChAc) and X-linked McLeod syndrome (MLS). A series of Italian patients selected through a multicenter study for these specific neurological phenotypes underwent DNA sequencing of the VPS13A and XK genes to search for causative mutations. Where it has been possible, muscle biopsies were obtained and thoroughly investigated with histochemical assays. A total of nine patients from five different families were diagnosed with ChAC and had mostly biallelic changes in the VPS13A gene (three nonsense, two frameshift, three splicing), while three patients from a single X-linked family were diagnosed with McLeod syndrome and had a deletion in the XK gene. Despite a very low incidence (only one thousand cases of ChAc and a few hundred MLS cases reported worldwide), none of the 8 VPS13A variants identified in our patients is shared by two families, suggesting the high genetic variability of ChAc in the Italian population. In our series, in line with epidemiological data, McLeod syndrome occurs less frequently than ChAc, although it can be easily suspected because of its X-linked mode of inheritance. Finally, histochemical studies strongly suggest that muscle pathology is not simply secondary to the axonal neuropathy, frequently seen in these patients, but primary myopathic alterations can be detected in both NA syndromes.


Subject(s)
Muscle, Skeletal , Mutation , Vesicular Transport Proteins , Adult , Child , Cohort Studies , Erythrocytes/metabolism , Erythrocytes/pathology , Female , Humans , Italy , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Neuroacanthocytosis/genetics , Neuroacanthocytosis/metabolism , Neuroacanthocytosis/pathology , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
19.
Ann Neurol ; 89(3): 587-597, 2021 03.
Article in English | MEDLINE | ID: mdl-33349939

ABSTRACT

OBJECTIVE: This study was undertaken to identify preoperative predictive factors of long-term motor outcome in a large cohort of consecutive Parkinson disease (PD) patients with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS: All consecutive PD patients who underwent bilateral STN-DBS at the Grenoble University Hospital (France) from 1993 to 2015 were evaluated before surgery, at 1 year (short-term), and in the long term after surgery. All available demographic variables, neuroimaging data, and clinical characteristics were collected. Preoperative predictors of long-term motor outcome were investigated by performing survival and univariate/multivariate Cox regression analyses. Loss of motor benefit from stimulation in the long term was defined as a reduction of less than 25% in the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III scores compared to the baseline off-medication scores. As a secondary objective, potential predictors of short-term motor outcome after STN-DBS were assessed by performing univariate and multivariate linear regression analyses. RESULTS: In the long-term analyses (mean follow-up = 8.4 ± 6.26 years, median = 10 years, range = 1-17 years), 138 patients were included. Preoperative higher frontal score and off-medication MDS-UPDRS part III scores predicted a better long-term motor response to stimulation, whereas the presence of vascular changes on neuroimaging predicted a worse motor outcome. In 357 patients with available 1-year follow-up, preoperative levodopa response, tremor dominant phenotype, baseline frontal score, and off-medication MDS-UPDRS part III scores predicted the short-term motor outcome. INTERPRETATION: Frontal lobe dysfunction, disease severity in the off-medication condition, and the presence of vascular changes on neuroimaging represent the main preoperative clinical predictors of long-term motor STN-DBS effects. ANN NEUROL 2021;89:587-597.


Subject(s)
Deep Brain Stimulation , Parkinson Disease/therapy , Subthalamic Nucleus , Adult , Aged , Cerebrovascular Disorders/diagnostic imaging , Cerebrovascular Disorders/epidemiology , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/psychology , Executive Function , Female , Follow-Up Studies , Humans , Linear Models , Male , Middle Aged , Multivariate Analysis , Neuropsychological Tests , Parkinson Disease/epidemiology , Parkinson Disease/physiopathology , Parkinson Disease/psychology , Prognosis , Proportional Hazards Models , Severity of Illness Index , Treatment Outcome
20.
Neurol Sci ; 42(1): 259-266, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32638134

ABSTRACT

BACKGROUND: In most centers, the surgery of deep brain stimulation (DBS) is performed using a stereotactic frame. Compared with frame-based technique, frameless stereotaxy reduces the duration of surgical procedure and patient's discomfort, with lead placing accuracy equivalent after the learning curve. Although several studies have investigated the targeting accuracy of this technique, only a few studies reported clinical outcomes, with data of short-term follow-up. OBJECTIVE: To assess clinical efficacy and safety of frameless bilateral subthalamic nucleus (STN) DBS in Parkinson's disease (PD) patients at 1- and 3-year follow-up. METHODS: Consecutive PD patients who underwent bilateral STN-DBS with a manual adjustable frameless system were included in the study. The data were collected retrospectively. RESULTS: Eighteen PD patients underwent bilateral STN-DBS implant and were included in the study. All patients completed 1-year observation and ten of them completed 3-year observation. At 1-year follow-up, motor efficacy of STN stimulation in off-med condition was of 30.1% (P = 0.003) and at 3-year follow-up was of 36.3%, compared with off-stim condition at 3-year follow-up (P = 0.005). Dopaminergic drugs were significantly reduced by 31.2% 1 year after the intervention (P = 0.003) and 31.7% 3 years after the intervention (P = 0.04). No serious adverse events occurred during surgery. CONCLUSIONS: Frameless stereotaxy is an effective and safe technique for DBS surgery at 1- and 3-year follow-up, with great advantages for patients' discomfort during surgery.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Neuronavigation , Parkinson Disease/therapy , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...