Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics ; 21(16): e2000238, 2021 08.
Article in English | MEDLINE | ID: mdl-34133848

ABSTRACT

The aim of this study was to profile plasma proteome responses in bulls experimentally treated with dexamethasone at anabolic dosage. Illicit use of active substances in animal husbandry remains a matter of concern in Europe. Corticosteroids are probably one of the most widespread growth promoter family illegally used in beef cattle and veal calves. Testing for corticosteroids relies on detection of drug residues or their metabolites in biological fluids or tissues. Their indirect detection by mapping altered physiological parameters may overcome limits linked to route of administration, dosage, biotransformation and elimination kinetics that can lower residual drug concentration, hampering official controls. A set of 11 proteins proposed in literature as potential markers of anabolic treatments with dexamethasone, was quantified in bovine plasma by targeted proteomics based on liquid chromatography-high resolution tandem mass spectrometry. Among investigated proteins, sex hormone-binding globulin (SHBG), histidine-rich glycoprotein (HRG) and paraoxonase-1 (PON1) were found to be biomarkers of treatment. To investigate further such biomarkers, an additional group of veal calves was experimentally treated with dexamethasone at anabolic. These animals also demonstrated a significant alteration in SHBG, HRG and PON1 concentration, suggesting that quantification of plasma markers have the potential to detect animals illegally exposed to dexamethasone.


Subject(s)
Dexamethasone , Proteomics , Animals , Biomarkers , Blood Proteins , Cattle , Male , Proteome
2.
Food Chem ; 353: 129366, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33838430

ABSTRACT

Surveillance of illegal use of growth promoters such as ß2-agonists in food producing animals rely on the detection of drug residues by LC-MS/MS. Screening strategies focusing on indirect physiological responses following administration of active compounds are promising approaches to strengthen existing targeted methods and ensure food safety. A metabolomics analysis based on LC-HRMS was carried out on liver extracts from bulls experimentally treated with clenbuterol combined with dexamethasone (n = 8) to mimic a potential anabolic practice, and control animals (n = 8). Nicotinic acid and 5'-deoxy-5'-methylthioadenosine were identified as biomarkers of treatment. Ratio values of such markers to others of the same metabolic pathways (nicotinamide or methionine) were used to develop a classification model to assign animals as treated with clenbuterol or non-treated. The classification model was tested on an external validation set comprising 74 animals either treated with different anabolic compounds (ß2-agonists, sexual steroids, corticosteroid), or non-treated, showing 100% sensitivity and specificity.


Subject(s)
Adrenergic beta-Agonists/metabolism , Chromatography, Liquid/methods , Clenbuterol/metabolism , Metabolomics/methods , Tandem Mass Spectrometry/methods , Animals , Biomarkers/metabolism , Cattle , Drug Residues/metabolism , Liver/metabolism , Male , Reproducibility of Results
3.
Proteomics ; 19(9): e1800422, 2019 05.
Article in English | MEDLINE | ID: mdl-30865377

ABSTRACT

Illegal use of growth promoter compounds in food production exposes consumers to health risk. Surveillance of such practices is based on direct detection of drugs or related metabolites by HPLC-MS/MS. Screening strategies focusing on indirect biological responses are considered promising tools to improve surveillance. In this study, an untargeted shotgun proteomics approach based on tandem mass tags (TMTs) is carried out to identify proteins altered in bovine liver after different anabolic treatments. Three controlled pharmacological treatments with dexamethasone, a combination of dexamethasone and clenbuterol, or a combination of sexual steroids (trenbolone and estradiol) are analyzed. Untargeted TMT analysis of liver digests by high resolution MS allowed for the relative quantification of proteins. Thanks to partial least squarediscriminant analysis, a set of proteins capable to classify animals treated with dexamethasone alone (11 proteins), or in combination with clenbuterol (13 proteins) are identified. No significant difference is found upon administration of sexual steroids. After relative quantification of candidate markers by parallel reaction monitoring (PRM), two predictive models are trained to validate protein markers. Finally, an independent animal set of control bulls and bulls treated with dexamethasone is analyzed by PRM to further validate a predictive model giving an accuracy of 100%.


Subject(s)
Biomarkers , Liver/metabolism , Proteins/genetics , Proteomics , Animals , Cattle , Chromatography, High Pressure Liquid , Estrogens/genetics , Liver/drug effects , Proteins/isolation & purification , Tandem Mass Spectrometry
4.
Food Chem ; 234: 295-302, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28551239

ABSTRACT

Awareness about pyrrolizidine alkaloids (PAs) and tropane alkaloids (TAs) in food was recently raised by the European Food Safety Authority stressing the lack of data and gaps of knowledge required to improve the risk assessment strategy. The present study aimed at the elaboration and validation of a method to determine PAs and TAs in honey. QuEChERS sample treatment and liquid chromatography coupled to hybrid high resolution mass spectrometry, were used. The method resulted in good linearity (R2>0.99) and low limits of detection and quantification, ranging from 0.04 to 0.2µgkg-1 and from 0.1 to 0.7µgkg-1 respectively. Recoveries ranged from 92.3 to 114.8% with repeatability lying between 0.9 and 15.1% and reproducibility between 1.1 and 15.6%. These performances demonstrate the selectivity and sensitivity of the method for simultaneous trace detection and quantification of PAs and TAs in honey, verified through the analysis of forty commercial samples.


Subject(s)
Food Contamination/analysis , Honey/analysis , Pyrrolizidine Alkaloids/analysis , Tropanes/analysis , Chromatography, Liquid , Reproducibility of Results , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...