Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Front Cell Dev Biol ; 12: 1362695, 2024.
Article in English | MEDLINE | ID: mdl-38444829

ABSTRACT

Gastrulation in zebrafish embryos commences with the morphogenetic rearrangement of blastodermal cells, which undergo a coordinated spreading from the animal pole to wrap around the egg at the vegetal pole. This rearrangement, known as epiboly, relies on the orchestrated activity of maternal transcripts present in the egg, compensating for the gradual activation of the zygotic genome. Epiboly involves the mechano-transducer activity of yap1 but what are the regulators of yap1 activity and whether these are maternally or zygotically derived remain elusive. Our study reveals the crucial role of maternal vgll4a, a proposed Yap1 competitor, during zebrafish epiboly. In embryos lacking maternal/zygotic vgll4a (MZvgll4a), the progression of epiboly and blastopore closure is delayed. This delay is associated with the ruffled appearance of the sliding epithelial cells, decreased expression of yap1-downstream targets and transient impairment of the actomyosin ring at the syncytial layer. Our study also shows that, rather than competing with yap1, vgll4a modulates the levels of the E-cadherin/ß-catenin adhesion complex at the blastomeres' plasma membrane and hence their actin cortex distribution. Taking these results together, we propose that maternal vgll4a acts at epiboly initiation upstream of yap1 and the E-cadherin/ß-catenin adhesion complex, contributing to a proper balance between tissue tension/cohesion and contractility, thereby promoting a timely epiboly progression.

3.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36714981

ABSTRACT

The vertebrate eye is shaped as a cup, a conformation that optimizes vision and is acquired early in development through a process known as optic cup morphogenesis. Imaging living, transparent teleost embryos and mammalian stem cell-derived organoids has provided insights into the rearrangements that eye progenitors undergo to adopt such a shape. Molecular and pharmacological interference with these rearrangements has further identified the underlying molecular machineries and the physical forces involved in this morphogenetic process. In this Review, we summarize the resulting scenarios and proposed models that include common and species-specific events. We further discuss how these studies and those in environmentally adapted blind species may shed light on human inborn eye malformations that result from failures in optic cup morphogenesis, including microphthalmia, anophthalmia and coloboma.


Subject(s)
Coloboma , Eye , Animals , Humans , Embryonic Development , Organogenesis , Morphogenesis/genetics , Retina , Mammals
4.
Development ; 149(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36520654

ABSTRACT

Appropriate patterning of the retina during embryonic development is assumed to underlie the establishment of spatially localised specialisations that mediate the perception of specific visual features. For example, in zebrafish, an area involved in high acuity vision (HAA) is thought to be present in the ventro-temporal retina. Here, we show that the interplay of the transcription factor Rx3 with Fibroblast Growth Factor and Hedgehog signals initiates and restricts foxd1 expression to the prospective temporal retina, initiating naso-temporal regionalisation of the retina. Abrogation of Foxd1 results in the loss of temporal and expansion of nasal retinal character, and consequent absence of the HAA. These structural defects correlate with severe visual defects, as assessed in optokinetic and optomotor response assays. In contrast, optokinetic responses are unaffected in the opposite condition, in which nasal retinal character is lost at the expense of expanded temporal character. Our study indicates that the establishment of temporal retinal character during early retinal development is required for the specification of the HAA, and suggests a prominent role of the temporal retina in controlling specific visual functions.


Subject(s)
Hedgehog Proteins , Zebrafish , Animals , Zebrafish/genetics , Hedgehog Proteins/metabolism , Prospective Studies , Retina/metabolism , Vision, Ocular
6.
Front Cell Dev Biol ; 9: 767048, 2021.
Article in English | MEDLINE | ID: mdl-34746155

ABSTRACT

Hedgehog (Hh) signaling is a highly regulated molecular pathway implicated in many developmental and homeostatic events. Mutations in genes encoding primary components or regulators of the pathway cause an array of congenital malformations or postnatal pathologies, the extent of which is not yet fully defined. Mosmo (Modulator of Smoothened) is a modulator of the Hh pathway, which encodes a membrane tetraspan protein. Studies in cell lines have shown that Mosmo promotes the internalization and degradation of the Hh signaling transducer Smoothened (Smo), thereby down-modulating pathway activation. Whether this modulation is essential for vertebrate embryonic development remains poorly explored. Here, we have addressed this question and show that in zebrafish embryos, the two mosmo paralogs, mosmoa and mosmob, are expressed in the head mesenchyme and along the entire ventral neural tube. At the cellular level, Mosmoa localizes at the plasma membrane, cytoplasmic vesicles and primary cilium in both zebrafish and chick embryos. CRISPR/Cas9 mediated inactivation of both mosmoa and mosmob in zebrafish causes frontonasal hypoplasia and craniofacial skeleton defects, which become evident in the adult fish. We thus suggest that MOSMO is a candidate to explain uncharacterized forms of human congenital craniofacial malformations, such as those present in the 16p12.1 chromosomal deletion syndrome encompassing the MOSMO locus.

7.
EMBO Rep ; 22(11): e51696, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34569685

ABSTRACT

Neuroinflammation is a common feature of many neurodegenerative diseases. It fosters a dysfunctional neuron-microglia-astrocyte crosstalk that, in turn, maintains microglial cells in a perniciously reactive state that often enhances neuronal damage. The molecular components that mediate this critical communication are not fully explored. Here, we show that secreted frizzled-related protein 1 (SFRP1), a multifunctional regulator of cell-to-cell communication, is part of the cellular crosstalk underlying neuroinflammation. In mouse models of acute and chronic neuroinflammation, SFRP1, largely astrocyte-derived, promotes and sustains microglial activation, and thus a chronic inflammatory state. SFRP1 promotes the upregulation of components of the hypoxia-induced factor-dependent inflammatory pathway and, to a lower extent, of those downstream of the nuclear factor-kappa B. We thus propose that SFRP1 acts as an astrocyte-to-microglia amplifier of neuroinflammation, representing a potential valuable therapeutic target for counteracting the harmful effect of chronic inflammation in several neurodegenerative diseases.


Subject(s)
Astrocytes , Microglia , Animals , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Microglia/metabolism , Neuroinflammatory Diseases
8.
Elife ; 102021 09 21.
Article in English | MEDLINE | ID: mdl-34545806

ABSTRACT

The vertebrate eye primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening.


Rounded eyeballs help to optimize vision ­ but how do they acquire their distinctive shape? In animals with backbones, including humans, the eye begins to form early in development. A single layer of embryonic tissue called the optic vesicle reorganizes itself into a two-layered structure: a thin outer layer of cells, known as the retinal pigmented epithelium (RPE for short), and a thicker inner layer called the neural retina. If this process fails, the animal may be born blind or visually impaired. How this flat two-layered structure becomes round is still being investigated. In fish, studies have shown that the inner cell layer ­ the neural retina ­ generates mechanical forces that cause the developing tissue to curve inwards to form a cup-like shape. But it was unclear whether the outer layer of cells (the RPE) also contributed to this process. Moreno-Marmol et al. were able to investigate this question by genetically modifying zebrafish to make all new RPE cells fluoresce. Following the early development of the zebrafish eye under a microscope revealed that RPE cells flattened themselves into long thin structures that stretched to cover the entire neural retina. This change was made possible by the cell's internal skeleton reorganizing. In fact, preventing this reorganization stopped the RPE cells from flattening, and precluded the optic cup from acquiring its curved shape. The results thus confirmed a direct role for the RPE in generating curvature. The entire process did not require the RPE to produce new cells, allowing the curved shape to emerge in just a few hours. This is a major advantage for fast-developing species such as zebrafish. In species whose embryos develop more slowly, such as mice and humans, the RPE instead grows by producing additional cells ­ a process that takes many days. The development of the eye thus shows how various species use different evolutionary approaches to achieve a common goal.


Subject(s)
Morphogenesis , Retinal Pigment Epithelium/cytology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Biomechanical Phenomena , Embryo, Nonmammalian , Embryonic Development , Retina , Zebrafish/genetics
10.
Nat Commun ; 12(1): 3866, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34162866

ABSTRACT

Sight depends on the tight cooperation between photoreceptors and pigmented cells, which derive from common progenitors through the bifurcation of a single gene regulatory network into the neural retina (NR) and retinal-pigmented epithelium (RPE) programs. Although genetic studies have identified upstream nodes controlling these networks, their regulatory logic remains poorly investigated. Here, we characterize transcriptome dynamics and chromatin accessibility in segregating NR/RPE populations in zebrafish. We analyze cis-regulatory modules and enriched transcription factor motives to show extensive network redundancy and context-dependent activity. We identify downstream targets, highlighting an early recruitment of desmosomal genes in the flattening RPE and revealing Tead factors as upstream regulators. We investigate the RPE specification network dynamics to uncover an unexpected sequence of transcription factors recruitment, which is conserved in humans. This systematic interrogation of the NR/RPE bifurcation should improve both genetic counseling for eye disorders and hiPSCs-to-RPE differentiation protocols for cell-replacement therapies in degenerative diseases.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Morphogenesis/genetics , Retinal Pigment Epithelium/metabolism , Zebrafish/genetics , Animals , Animals, Genetically Modified , Chromatin Immunoprecipitation Sequencing/methods , Cluster Analysis , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , RNA-Seq/methods , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/embryology , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/classification , Transcription Factors/genetics , Zebrafish/embryology
12.
Eur J Neurosci ; 53(8): 2419-2420, 2021 04.
Article in English | MEDLINE | ID: mdl-33759256
13.
Front Cell Dev Biol ; 8: 681, 2020.
Article in English | MEDLINE | ID: mdl-32903776

ABSTRACT

Reg-1α belongs to the Reg family of small, secreted proteins expressed in both pancreas and nervous system. Reg-1α is composed of two domains, an insoluble C-type lectin domain and a short soluble N-terminal peptide, which is released from the molecule upon proteolytic N-terminal processing, although the biological significance of this proteolysis remains unclear. We have previously shown that binding of Reg-1α to its receptor Extl3 stimulates axonal outgrowth. Reg-1α and Extl3 genes are expressed in the developing cortex but their expression decreases in adulthood, pointing to a possible function of this signaling system at the early developmental stages. Here, we demonstrate that recombinant Reg-1α increases migration and differentiation of cultured embryonic rat telencephalic progenitors via the activation of GSK-3ß activity. In vivo overexpression of Reg-1α by in utero electroporation, has a similar effect, favoring premature differentiation of cortical progenitors. Notably, the N-terminal soluble domain, but not the C-type lectin domain, is largely responsible for Reg-1α effects on cortical neuronal differentiation. We thus conclude that Reg-1α via its proteolytically generated N-terminal domain is required for basic development processes.

14.
Sci Rep ; 10(1): 5115, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198470

ABSTRACT

Millions of individuals worldwide suffer from impaired vision, a condition with multiple origins that often impinge upon the light sensing cells of the retina, the photoreceptors, affecting their integrity. The molecular components contributing to this integrity are however not yet fully understood. Here we have asked whether Secreted Frizzled Related Protein 1 (SFRP1) may be one of such factors. SFRP1 has a context-dependent function as modulator of Wnt signalling or of the proteolytic activity of A Disintegrin And Metalloproteases (ADAM) 10, a main regulator of neural cell-cell communication. We report that in Sfrp1-/- mice, the outer limiting membrane (OLM) is discontinuous and the photoreceptors disorganized and more prone to light-induced damage. Sfrp1 loss significantly enhances the effect of the Rpe65Leu450Leu genetic variant -present in the mouse genetic background- which confers sensitivity to light-induced stress. These alterations worsen with age, affect visual function and are associated to an increased proteolysis of Protocadherin 21 (PCDH21), localized at the photoreceptor outer segment, and N-cadherin, an OLM component. We thus propose that SFRP1 contributes to photoreceptor fitness with a mechanism that involves the maintenance of OLM integrity. These conclusions are discussed in view of the broader implication of SFRP1 in neurodegeneration and aging.


Subject(s)
Cell Membrane/pathology , Membrane Proteins/genetics , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/pathology , Vision Disorders/pathology , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Cadherins/metabolism , Cell Communication/genetics , Light/adverse effects , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Vision Disorders/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , cis-trans-Isomerases/genetics
15.
Neuroscientist ; 26(2): 185-196, 2020 04.
Article in English | MEDLINE | ID: mdl-31509088

ABSTRACT

The primordium of the vertebrate eye is composed of a pseudostratified and apparently homogeneous neuroepithelium, which folds inward to generate a bilayered optic cup. During these early morphogenetic events, the optic vesicle is patterned along three different axes-proximo-distal, dorso-ventral, and naso-temporal-and three major domains: the neural retina, the retinal pigment epithelium (RPE), and the optic stalk. These fundamental steps that enable the subsequent development of a functional eye, entail the precise coordination among genetic programs. These programs are driven by the interplay of signaling pathways and transcription factors, which progressively dictate how each tissue should evolve. Here, we discuss the contribution of the Hh, Wnt, FGF, and BMP signaling pathways to the early patterning of the retina. Comparative studies in different vertebrate species have shown that their morphogenetic activity is repetitively used to orchestrate the progressive specification of the eye with evolutionary conserved mechanisms that have been adapted to match the specific need of a given species.


Subject(s)
Image Processing, Computer-Assisted , Morphogenesis/physiology , Retina/pathology , Retina/physiopathology , Signal Transduction/physiology , Animals , Hedgehog Proteins/metabolism , Humans , Retina/metabolism , Signal Transduction/genetics , Vertebrates/metabolism
16.
EMBO Mol Med ; 11(8): e10291, 2019 08.
Article in English | MEDLINE | ID: mdl-31318166

ABSTRACT

Optic nerve atrophy represents the most common form of hereditary optic neuropathies leading to vision impairment. The recently described Bosch-Boonstra-Schaaf optic atrophy (BBSOA) syndrome denotes an autosomal dominant genetic form of neuropathy caused by mutations or deletions in the NR2F1 gene. Herein, we describe a mouse model recapitulating key features of BBSOA patients-optic nerve atrophy, optic disc anomalies, and visual deficits-thus representing the only available mouse model for this syndrome. Notably, Nr2f1-deficient optic nerves develop an imbalance between oligodendrocytes and astrocytes leading to postnatal hypomyelination and astrogliosis. Adult heterozygous mice display a slower optic axonal conduction velocity from the retina to high-order visual centers together with associative visual learning deficits. Importantly, some of these clinical features, such the optic nerve hypomyelination, could be rescued by chemical drug treatment in early postnatal life. Overall, our data shed new insights into the cellular mechanisms of optic nerve atrophy in BBSOA patients and open a promising avenue for future therapeutic approaches.


Subject(s)
COUP Transcription Factor I/genetics , Haploinsufficiency , Nerve Fibers, Myelinated/ultrastructure , Optic Atrophy, Autosomal Dominant/genetics , Optic Nerve/ultrastructure , Animals , Astrocytes/metabolism , Astrocytes/ultrastructure , Behavior, Animal , COUP Transcription Factor I/deficiency , Disease Models, Animal , Genetic Predisposition to Disease , Heterozygote , Humans , Learning , Mice, Knockout , Miconazole/pharmacology , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/metabolism , Neural Conduction , Oligodendroglia/metabolism , Oligodendroglia/ultrastructure , Optic Atrophy, Autosomal Dominant/drug therapy , Optic Atrophy, Autosomal Dominant/metabolism , Optic Atrophy, Autosomal Dominant/pathology , Optic Nerve/drug effects , Optic Nerve/metabolism , Visual Perception
17.
Nat Neurosci ; 22(8): 1258-1268, 2019 08.
Article in English | MEDLINE | ID: mdl-31308530

ABSTRACT

The deposition of aggregated amyloid-ß peptides derived from the pro-amyloidogenic processing of the amyloid precurson protein (APP) into characteristic amyloid plaques (APs) is distinctive to Alzheimer's disease (AD). Alternative APP processing via the metalloprotease ADAM10 prevents amyloid-ß formation. We tested whether downregulation of ADAM10 activity by its secreted endogenous inhibitor secreted-frizzled-related protein 1 (SFRP1) is a common trait of sporadic AD. We demonstrate that SFRP1 is significantly increased in the brain and cerebrospinal fluid of patients with AD, accumulates in APs and binds to amyloid-ß, hindering amyloid-ß protofibril formation. Sfrp1 overexpression in an AD-like mouse model anticipates the appearance of APs and dystrophic neurites, whereas its genetic inactivation or the infusion of α-SFRP1-neutralizing antibodies favors non-amyloidogenic APP processing. Decreased Sfrp1 function lowers AP accumulation, improves AD-related histopathological traits and prevents long-term potentiation loss and cognitive deficits. Our study unveils SFRP1 as a crucial player in AD pathogenesis and a promising AD therapeutic target.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , ADAM10 Protein/biosynthesis , ADAM10 Protein/genetics , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/biosynthesis , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Antibodies, Blocking/therapeutic use , Brain Chemistry/genetics , Down-Regulation , Humans , Long-Term Potentiation , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/biosynthesis , Mice , Mice, Transgenic , Neurites/pathology , Plaque, Amyloid/drug therapy , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology
18.
iScience ; 15: 257-273, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31082736

ABSTRACT

Visual system development involves the formation of neuronal projections connecting the retina to the thalamic dorso-lateral geniculate nucleus (dLGN) and the thalamus to the visual cerebral cortex. Patients carrying mutations in the SOX2 transcription factor gene present severe visual defects, thought to be linked to SOX2 functions in the retina. We show that Sox2 is strongly expressed in mouse postmitotic thalamic projection neurons. Cre-mediated deletion of Sox2 in these neurons causes reduction of the dLGN, abnormal distribution of retino-thalamic and thalamo-cortical projections, and secondary defects in cortical patterning. Reduced expression, in mutants, of Sox2 target genes encoding ephrin-A5 and the serotonin transport molecules SERT and vMAT2 (important for establishment of thalamic connectivity) likely provides a molecular contribution to these defects. These findings unveil thalamic SOX2 function as a novel regulator of visual system development and a plausible additional cause of brain-linked genetic blindness in humans.

19.
Cell Stem Cell ; 24(3): 462-476.e6, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849367

ABSTRACT

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.


Subject(s)
Chromatin/metabolism , Neural Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cells, Cultured , Gene Regulatory Networks/genetics , Mice , Mice, Knockout , Mice, Transgenic , Mutation , SOXB1 Transcription Factors/deficiency , SOXB1 Transcription Factors/genetics , Zebrafish
20.
Hum Genet ; 138(8-9): 1001-1006, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29980841

ABSTRACT

Embryological manipulations in chick embryos have been pivotal in our understanding of many aspects of vertebrate eye formation. This research was particularly important in uncovering the role of tissue interactions as drivers of eye morphogenesis and to dissect the function of critical genes. Here, we have highlighted a few of these past experiments to endorse their value in searching for hitherto unknown causes of rare congenital eye anomalies, such as microphthalmia, anophthalmia and coloboma. We have also highlighted a number of similarities between the chicken and human eye, which might be exploited to address other eye pathologies, including degenerative ocular diseases.


Subject(s)
Chickens/genetics , Eye Abnormalities/genetics , Animals , Coloboma/genetics , Eye/physiopathology , Humans , Microphthalmos/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL