Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters











Publication year range
1.
J Alzheimers Dis ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39240636

ABSTRACT

The increase in the incidence of dementia over the last century correlates strongly with the increases in post-reproductive lifespan during this time. As post-reproductive lifespan continues to increase it is likely that the incidence of dementia will also increase unless therapies are developed to prevent, slow or cure dementia. A growing body of evidence implicates age-related endocrine dyscrasia and the length of time that the brain is subjected to this endocrine dyscrasia, as a key causal event leading to the cognitive decline associated with aging and Alzheimer's disease (AD), the major form of dementia in our society. In particular, the elevations in circulating gonadotropins, resulting from the loss of gonadal sex hormone production with menopause and andropause, appear central to the development of AD neuropathology and cognitive decline. This is supported by numerous cell biology, preclinical animal, and epidemiological studies, as well as human clinical studies where suppression of circulating luteinizing hormone and/or follicle-stimulating hormone with either gonadotropin-releasing hormone analogues, or via physiological hormone replacement therapy, has been demonstrated to halt or significantly slow cognitive decline in those with AD. This review provides an overview of past and present studies demonstrating the importance of hypothalamic-pituitary-gonadal hormone balance for normal cognitive functioning, and how targeting age-related endocrine dyscrasia with hormone rebalancing strategies provides an alternative treatment route for those with AD.

2.
Front Neurol ; 13: 841822, 2022.
Article in English | MEDLINE | ID: mdl-35645980

ABSTRACT

Alterations in brain metal ion homeostasis have been reported with aging and are implicated in the pathogenesis of neurodegenerative diseases. To assess whether age-related changes in hypothalamic-pituitary-gonadal (HPG) hormones might be involved in modulating brain metal ion homeostasis, we treated 7.5-month intact, sham-ovariecomized and ovariectomized C57B6SJL mice with vehicle or leuprolide acetate (for 9-months) to differentiate between whether sex steroids or gonadotropins might modulate brain metal ion concentrations. Unlike other aging mammals, there was no increase in plasma luteinizing hormone (LH) and follicle-stimulating hormone (FSH) concentrations following estropause in mice, suggesting there was sufficient residual production by the follicle depleted ovary, of sex steroids like estrogens and protein hormones like the inhibins, in order to suppress pituitary LH/FSH production. Castration on the other hand induced significant increases in circulating LH and FSH. Modulation of plasma sex steroid and gonadotropin levels did not significantly alter the concentrations of brain metals tested (Fe, Zn, Cu, Mn, Co, Ni, Al, Li), although there was a tendency for a decrease in all brain metals following ovariectomy (low estrogens and progesterone, high gonadotropins), a response that was reversed with leuprolide acetate treatment (low sex steroids, low gonadotropins). Brain Cu concentration was the only metal correlated with plasma LH (-0.37, n = 30, p < 0.05) and FSH (-0.42, n = 29, p < 0.01). This study demonstrates that sex hormones do not markedly alter brain metal ion homeostasis, unlike previously reported studies of circulating metal ion homeostasis. The role of gonadotropins in regulating metal ion homeostasis does however warrant further study.

3.
Contemp Clin Trials ; 107: 106488, 2021 08.
Article in English | MEDLINE | ID: mdl-34166841

ABSTRACT

The LUCINDA Trial (Leuprolide plus Cholinesterase Inhibition to reduce Neurologic Decline in Alzheimer's) is a 52 week, randomized, placebo-controlled trial of leuprolide acetate (Eligard) in women with Alzheimer's disease (AD). Leuprolide acetate is a gonadotropin analogue commonly used for hormone-sensitive conditions such as prostate cancer and endometriosis. This repurposed drug demonstrated efficacy in a previous Phase II clinical trial in those women with AD who also received a stable dose of the acetylcholinesterase inhibitor donepezil (Bowen et al., 2015). Basic biological, epidemiological and clinical trial data suggest leuprolide acetate mediates improvement and stabilization of neuropathology and cognitive performance via the modulation of gonadotropin and/or gonadotropin-releasing hormone signaling. LUCINDA will enroll 150 women with mild-moderate AD who are receiving a stable dose of donepezil from three study sites in the United States. Cognition and function are the primary outcome measures as assessed by the Alzheimer's Disease Assessment Scale-Cognitive Subscale. Blood and MRI biomarkers are also measured to assess hormonal, inflammatory and AD biomarker changes. We present the protocol for LUCINDA and discuss trial innovations and challenges including changes necessitated by the covid-19 pandemic and study drug procurement issues.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Alzheimer Disease/drug therapy , COVID-19 , Cholinesterase Inhibitors/therapeutic use , Double-Blind Method , Female , Humans , Indans , Leuprolide/therapeutic use , Pandemics
4.
J Alzheimers Dis ; 63(4): 1269-1277, 2018.
Article in English | MEDLINE | ID: mdl-29782310

ABSTRACT

BACKGROUND: Estrogen and hormone replacement therapies to reduce Alzheimer's disease (AD) have yielded conflicting results. However, this study proposes that the well-characterized increase in serum gonadotropins following menopause or andropause are accountable for the increased risk of developing AD among the elderly population. OBJECTIVE: To determine the role of gonadotropins in the development of AD and investigate gonadotropin-releasing hormone (GnRH) agonist therapy as a potential preventative and/or disease-modifying approach to AD management. METHODS: Male Medicare beneficiaries aged 67 to 75 and hospitalized with prostate cancer (n = 115,789) were compared to three control groups: men of the same demographics undergoing a cholecystectomy (n = 97,267), herniorrhaphy (n = 68,778), or transurethral prostatectomy (n = 267,691). A proportion of the patients hospitalized with prostate cancer were assumed to have low concentrations of serum gonadotropins and sex steroids as a result of GnRH agonist therapy, while those in the control groups were assumed to have elevated gonadotropin but lowered sex steroid levels that are associated with andropause in this age group. RESULTS: The rates of development of select diagnoses of dementia, including AD, over a twelve-year follow-up period following surgery. When compared to control patients, men hospitalized with prostate cancer have a protection against dementia after twelve years of follow-up, with relative risks ranging from 0.48 to 0.83. CONCLUSION: Patients with prostate cancer are treated with the GnRH analogue leuprolide acetate, our data suggest that leuprolide acetate may be therapeutic for AD via its downregulation of serum gonadotropins.


Subject(s)
Dementia/drug therapy , Gonadotropin-Releasing Hormone/agonists , Hormones/therapeutic use , Hospitalization , Medicare , Aged , Dementia/epidemiology , Gonadotropin-Releasing Hormone/metabolism , Humans , Longitudinal Studies , Male , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/surgery , Retrospective Studies , United States
5.
Geroscience ; 39(1): 103-116, 2017 02.
Article in English | MEDLINE | ID: mdl-28271270

ABSTRACT

Post-reproductive lifespan varies greatly among species; human post-reproductive lifespan comprises ~30-50% of their total longevity, while semelparous salmon and dasyurid marsupials post-reproductive lifespan comprises <4% of their total longevity. To examine if the magnitude of hypothalamic-pituitary-gonadal (HPG) axis dyscrasia at the time of reproductive senescence determines post-reproductive lifespan, we examined the difference between pre- and post-reproductive (1) circulating sex hormones and (2) the ratio of sex steroids to gonadotropins (e.g., 17ß-estradiol/follicle-stimulating hormone (FSH)), an index of the dysregulation of the HPG axis and the level of dyotic (death) signaling post-reproduction. Animals with a shorter post-reproductive lifespan (<4% total longevity) had a more marked decline in circulating sex steroids and corresponding elevation in gonadotropins compared to animals with a longer post-reproductive lifespan (30-60% total longevity). In semelparous female salmon of short post-reproductive lifespan (1%), these divergent changes in circulating hormone concentration post-reproduction equated to a 711-fold decrease in the ratio of 17ß-estradiol/FSH between the reproductive and post-reproductive periods. In contrast, the decrease in the ratio of 17ß-estradiol/FSH in iteroparous female mammals with long post-reproductive lifespan was significantly less (1.7-34-fold) post-reproduction. Likewise, in male semelparous salmon, the decrease in the ratio of testosterone/FSH (82-fold) was considerably larger than for iteroparous species (1.3-11-fold). These results suggest that (1) organisms with greater reproductive endocrine dyscrasia more rapidly undergo senescence and die, and (2) the contribution post-reproduction by non-gonadal (and perhaps gonadal) tissues to circulating sex hormones dictates post-reproductive tissue health and longevity. In this way, reproduction and longevity are coupled, with the degree of non-gonadal tissue hormone production dictating the rate of somatic tissue demise post-reproduction and the differences in post-reproductive lifespans between species.


Subject(s)
Endocrine System/metabolism , Follicle Stimulating Hormone/metabolism , Gonadal Steroid Hormones/metabolism , Longevity , Testosterone/metabolism , Animals , Endocrine System/physiology , Female , Male , Marsupialia/metabolism , Reproduction/physiology , Salmon/metabolism , Sexual Maturation/physiology
7.
J Alzheimers Dis ; 47(1): 33-47, 2015.
Article in English | MEDLINE | ID: mdl-26402752

ABSTRACT

Early-onset familial Alzheimer's disease (EOFAD) and late-onset sporadic AD (LOSAD) both follow a similar pathological and biochemical course that includes: neuron and synapse loss and dysfunction, microvascular damage, microgliosis, extracellular amyloid-ß deposition, tau phosphorylation, formation of intracellular neurofibrillary tangles, endoreduplication and related cell cycle events in affected brain regions. Any mechanistic explanation of AD must accommodate these biochemical and neuropathological features for both forms of the disease. In this insight paper we provide a unifying hypothesis for EOFAD and LOSAD that proposes that the aberrant re-entry of terminally differentiated, post-mitotic neurons into the cell division cycle is a common pathway that explains both early and late-onset forms of AD. Cell cycle abnormalities appear very early in the disease process, prior to the appearance of plaques and tangles, and explain the biochemical (e.g. tau phosphorylation), neuropathological (e.g. neuron hypertrophy; polypoidy) and cognitive changes observed in EOFAD and LOSAD. Genetic mutations in AßPP, PSEN1, and PSEN2 that alter amyloid-ß precursor protein and Notch processing drive reactivation of the cell cycle in EOFAD, while age-related reproductive endocrine dyscrasia that upregulates mitogenic TNF signaling and AßPP processing toward the amyloidogenic pathway drives reactivation of the cell cycle in LOSAD. In essence, AßPP and presenilin mutations initiate early, what endocrine dyscrasia initiates later: aberrant cell cycle re-entry of post-mitotic neurons leading to neurodegeneration and cognitive decline in AD. Inhibition of cell cycle re-entry in post-mitotic neurons may be a useful therapeutic strategy to prevent, slow or halt disease progression.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Neurons/physiology , Presenilin-1/genetics , Alzheimer Disease/complications , Cell Cycle/genetics , Humans , Memory Disorders/etiology , Memory Disorders/genetics , Mutation/genetics , Neurofibrillary Tangles/pathology , Phosphorylation/genetics
8.
Horm Behav ; 76: 63-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26188949

ABSTRACT

This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-ß precursor protein processing towards the production of mitogenic Aß; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease.


Subject(s)
Andropause/physiology , Cell Cycle/physiology , Cognition Disorders/metabolism , Menopause/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Signal Transduction/physiology , Animals , Humans
9.
J Alzheimers Dis ; 44(2): 549-60, 2015.
Article in English | MEDLINE | ID: mdl-25310993

ABSTRACT

To test the efficacy and safety of leuprolide acetate (Lupron Depot) in the treatment of Alzheimer's disease (AD), we conducted a 48-week, double-blind, placebo-controlled, dose-ranging study in women aged 65 years or older with mild to moderate AD. A total of 109 women with mild to moderate AD and a Mini-Mental State Examination score between 12 and 24 inclusive were randomized to low dose Lupron Depot (11.25 mg leuprolide acetate), high dose Lupron Depot (22.5 mg leuprolide acetate), or placebo injections every 12 weeks. There were no statistically significant differences in primary efficacy parameters (ADAS-Cog and ADCS-CGIC), although there was a non-statistically significant trend in favor of the high dose Lupron group on the ADAS-Cog. There were no statistically significant differences in secondary efficacy parameters (NPI, ADCS-ADL, BI, and ADCS-Severity Rating). However, in the a priori designated subgroup analysis of patients taking an acetylcholinesterase inhibitor (AChEI), there was a statistically significant benefit in the high dose group compared to both the low dose and placebo groups as determined by ADAS-Cog (mean decline: 0.18, 4.21, and 3.30), ADCS-CGIC (% subjects experiencing decline: 38, 82, and 63), and ADCS-ADL (mean decline: -0.54, -8.00, and -6.85), respectively. No differences between treatment groups were seen on the NPI, ADCS-CGI Severity Rating, or the BI in the subgroup analysis. These data indicate that cognitive function is preserved in patients treated with high dose Lupron who were already using AChEIs. The positive interaction between Lupron and AChEIs warrants further investigation for the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/therapeutic use , Cognition/drug effects , Leuprolide/administration & dosage , Nootropic Agents/therapeutic use , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/psychology , Delayed-Action Preparations , Dose-Response Relationship, Drug , Double-Blind Method , Drug Therapy, Combination , Female , Follicle Stimulating Hormone/blood , Humans , Leuprolide/adverse effects , Luteinizing Hormone/blood , Nootropic Agents/adverse effects , Psychiatric Status Rating Scales , Treatment Outcome
10.
Exp Gerontol ; 46(2-3): 100-7, 2011.
Article in English | MEDLINE | ID: mdl-20851172

ABSTRACT

The Reproductive-Cell Cycle Theory posits that the hormones that regulate reproduction act in an antagonistic pleiotrophic manner to control aging via cell cycle signaling; promoting growth and development early in life in order to achieve reproduction, but later in life, in a futile attempt to maintain reproduction, become dysregulated and drive senescence. Since reproduction is the most important function of an organism from the perspective of the survival of the species, if reproductive-cell cycle signaling factors determine the rate of growth, determine the rate of development, determine the rate of reproduction, and determine the rate of senescence, then by definition they determine the rate of aging and thus lifespan. The theory is able to explain: 1) the simultaneous regulation of the rate of aging and reproduction as evidenced by the fact that environmental conditions and experimental interventions known to extend longevity are associated with decreased reproductive-cell cycle signaling factors, thereby slowing aging and preserving fertility in a hostile reproductive environment; 2) two phenomena that are closely related to species lifespan-the rate of growth and development and the ultimate size of the animal; 3). the apparent paradox that size is directly proportional to lifespan and inversely proportional to fertility between species but vice versa within a species; 4). how differing rates of reproduction between species is associated with differences in their lifespan; 5). why we develop aging-related diseases; and 6). an evolutionarily credible reason for why and how aging occurs-these hormones act in an antagonistic pleiotrophic manner via cell cycle signaling; promoting growth and development early in life in order to achieve reproduction, but later in life, in a futile attempt to maintain reproduction, become dysregulated and drive senescence (dyosis). In essence, the Reproductive-Cell Cycle Theory can explain aging in all sexually reproductive life forms.


Subject(s)
Aging/physiology , Cell Cycle , Gonadal Hormones/physiology , Hypothalamo-Hypophyseal System/physiology , Reproduction , Animals , Cell Death , Cell Differentiation , Humans , Hypothalamic Hormones/physiology , Pituitary Hormones/physiology
11.
Stem Cell Res Ther ; 1(4): 28, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20836886

ABSTRACT

INTRODUCTION: The physiological signals that direct the division and differentiation of the zygote to form a blastocyst, and subsequent embryonic stem cell division and differentiation during early embryogenesis, are unknown. Although a number of growth factors, including the pregnancy-associated hormone human chorionic gonadotropin (hCG) are secreted by trophoblasts that lie adjacent to the embryoblast in the blastocyst, it is not known whether these growth factors directly signal human embryonic stem cells (hESCs). METHODS: Here we used hESCs as a model of inner cell mass differentiation to examine the hormonal requirements for the formation of embryoid bodies (EB's; akin to blastulation) and neuroectodermal rosettes (akin to neurulation). RESULTS: We found that hCG promotes the division of hESCs and their differentiation into EB's and neuroectodermal rosettes. Inhibition of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) signaling suppresses hESC proliferation, an effect that is reversed by treatment with hCG. hCG treatment rapidly upregulates steroidogenic acute regulatory protein (StAR)-mediated cholesterol transport and the synthesis of progesterone (P4). hESCs express P4 receptor A, and treatment of hESC colonies with P4 induces neurulation, as demonstrated by the expression of nestin and the formation of columnar neuroectodermal cells that organize into neural tubelike rosettes. Suppression of P4 signaling by withdrawing P4 or treating with the P4-receptor antagonist RU-486 inhibits the differentiation of hESC colonies into EB's and rosettes. CONCLUSIONS: Our findings indicate that hCG signaling via LHCGR on hESC promotes proliferation and differentiation during blastulation and neurulation. These findings suggest that trophoblastic hCG secretion and signaling to the adjacent embryoblast could be the commencement of trophic support by placental tissues in the growth and development of the human embryo.


Subject(s)
Chorionic Gonadotropin/metabolism , Embryonic Stem Cells/metabolism , Neurulation/physiology , Progesterone/metabolism , Receptors, LH/metabolism , Biological Transport , Cell Differentiation/drug effects , Cell Proliferation , Cells, Cultured , Cholesterol/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Female , Hormone Antagonists/pharmacology , Humans , Mifepristone/pharmacology , Nestin/biosynthesis , Neural Plate/cytology , Phosphoproteins/biosynthesis , Phosphoproteins/metabolism , Pregnancy , Receptors, LH/antagonists & inhibitors , Receptors, Progesterone/metabolism , Rosette Formation , Signal Transduction/drug effects
12.
J Neurochem ; 110(3): 1014-27, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19493163

ABSTRACT

Brain sex steroids are derived from both peripheral (primarily gonadal) and local (neurosteroids) sources and are crucial for neurogenesis, neural differentiation and neural function. The mechanism(s) regulating the production of neurosteroids is not understood. To determine whether hypothalamic-pituitary-gonadal axis components previously detected in the extra-hypothalamic brain comprise a feedback loop to regulate neuro-sex steroid (NSS) production, we assessed dynamic changes in expression patterns of steroidogenic acute regulatory (StAR) protein, a key regulator of steroidogenesis, and key hypothalamic-pituitary-gonadal endocrine receptors, by modulating peripheral sex hormone levels in female mice. Ovariectomy (OVX; high serum gonadotropins, low serum sex steroids) had a differential effect on StAR protein levels in the extrahypothalamic brain; increasing the 30- and 32-kDa variants but decreasing the 37-kDa variant and is indicative of cholesterol transport into mitochondria for steroidogenesis. Treatment of OVX animals with E(2), P(4), or E(2) + P(4) for 3 days, which decreases OVX-induced increases in GnRH/gonadotropin production, reversed this pattern. Suppression of gonadotropin levels in OVX mice using the GnRH agonist leuprolide acetate inhibited the processing of the 37-kDa StAR protein into the 30-kDa StAR protein, confirming that the differential processing of brain StAR protein is regulated by gonadotropins. OVX dramatically suppressed extra-hypothalamic brain gonadotropin-releasing hormone 1 receptor expression, and was further suppressed in E(2)- or P(4)-treated OVX mice. Together, these data indicate the existence of endocrine and autocrine/paracrine feedback loops that regulate NSS synthesis. Further delineation of these feedback loops that regulate NSS production will aid in developing therapies to maintain brain sex steroid levels and cognition.


Subject(s)
Gonadal Steroid Hormones/biosynthesis , Hypothalamo-Hypophyseal System/metabolism , Ovary/metabolism , Phosphoproteins/biosynthesis , Receptors, LHRH/biosynthesis , Animals , Feedback, Physiological/physiology , Female , Humans , Hypothalamus/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Neurotransmitter Agents/biosynthesis , Pituitary Gland/metabolism
13.
J Biol Chem ; 284(35): 23806-17, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19542221

ABSTRACT

The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-beta (Abeta) protein, is deposited in amyloid plaques in neurodegenerative conditions such as Alzheimer disease, Down syndrome, and head injury. We recently reported that this protein, normally associated with neurodegenerative conditions, is expressed by human embryonic stem cells (hESCs). We now report that the differential processing of AbetaPP via secretase enzymes regulates the proliferation and differentiation of hESCs. hESCs endogenously produce amyloid-beta, which when added exogenously in soluble and fibrillar forms but not oligomeric forms markedly increased hESC proliferation. The inhibition of AbetaPP cleavage by beta-secretase inhibitors significantly suppressed hESC proliferation and promoted nestin expression, an early marker of neural precursor cell (NPC) formation. The induction of NPC differentiation via the non-amyloidogenic pathway was confirmed by the addition of secreted AbetaPPalpha, which suppressed hESC proliferation and promoted the formation of NPCs. Together these data suggest that differential processing of AbetaPP is normally required for embryonic neurogenesis.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Cell Differentiation , Cell Proliferation , Embryonic Stem Cells/cytology , Neurons/cytology , Protein Processing, Post-Translational , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Cells, Cultured , Embryonic Stem Cells/metabolism , Humans , Neurons/metabolism
14.
Neoplasia ; 11(4): 365-76, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19308291

ABSTRACT

Mutational changes coupled with endocrine, paracrine, and/or autocrine signals regulate cell division during carcinogenesis. The hormone signals remain undefined, although the absolute requirement in vitro for fetal serum indicates the necessity for a fetal serum factor(s) in cell proliferation. Using prostatic cancer cell (PCC) lines as a model of cancer cell proliferation, we have identified the fetal serum component activin A and its signaling through the activin receptor type II (ActRII), as necessary, although not sufficient, for PCC proliferation. Activin A induced Smad2 phosphorylation and PCC proliferation, but only in the presence of fetal bovine serum (FBS). Conversely, activin A antibodies and inhibin A suppressed FBS-induced PCC proliferation confirming activin A as one of multiple serum components required for PCC proliferation. Basic fibroblast growth factor was subsequently shown to synergize activin A-induced PCC proliferation. Inhibition of ActRII signaling using a blocking antibody or antisense-P decreased mature ActRII expression, Smad2 phosphorylation, and the apparent viability of PCCs and neuroblastoma cells grown in FBS. Suppression of ActRII signaling in PCC and neuroblastoma cells did not induce apoptosis as indicated by the ratio of active/inactive caspase 3 but did correlate with increased cell detachment and ADAM-15 expression, a disintegrin whose expression is strongly correlated with prostatic metastasis. These findings indicate that ActRII signaling is required for PCC and neuroblastoma cell viability, with ActRII mediating cell fate via the regulation of cell adhesion. That ActRII signaling governs both cell viability and cell adhesion has important implications for developing therapeutic strategies to regulate cancer growth and metastasis.


Subject(s)
Activin Receptors, Type II/metabolism , Activins/metabolism , Epithelial Cells/metabolism , Prostatic Neoplasms/metabolism , Signal Transduction/physiology , ADAM Proteins/metabolism , Cell Adhesion/physiology , Cell Line, Tumor , Cell Survival/physiology , Epithelial Cells/cytology , Humans , Immunoblotting , Male , Membrane Proteins/metabolism , Neuroblastoma/metabolism
15.
Biochim Biophys Acta ; 1782(6): 401-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18381207

ABSTRACT

Reproductive hormones have been demonstrated to modulate both gap and tight junction protein expression in the ovary and other reproductive tissues, however the effects of changes in reproductive hormones on the selective permeability of the blood-brain barrier (BBB) remain unclear. Age-related declines in BBB integrity correlate with the loss of serum sex steroids and increase in gonadotropins with menopause/andropause. To examine the effect of reproductive senescence on BBB permeability and gap and tight junction protein expression/localization, female mice at 3 months of age were either sham operated (normal serum E2 and gonadotropins), ovariectomized (low serum E2 and high serum gonadotropins) or ovariectomized and treated with the GnRH agonist leuprolide acetate (low serum E2 and gonadotropins). Ovariectomy induced a 2.2-fold increase in Evan's blue dye extravasation into the brain. The expression and localization of the cytoplasmic membrane-associated tight junction protein zona occludens 1 (ZO-1) in microvessels was not altered among groups indicating that the increased paracellular permeability was not due to changes in this tight junction protein. However, ovariectomy induced a redistribution of the gap junction protein connexin-43 (Cx43) such that immunoreactivity relocalized from along the extracellular microvascular endothelium to become associated with endothelial cells. An increase in Cx43 expression in the mouse brain following ovariectomy was suppressed in ovariectomized animals treated with leuprolide acetate, indicating that serum gonadotropins rather than sex steroids were modulating Cx43 expression. These results suggest that elevated serum gonadotropins following reproductive senescence may be one possible cause of the loss of selective permeability of the BBB at this time. Furthermore, these findings implicate Cx43 in mediating changes in BBB permeability, and serum gonadotropins in the cerebropathophysiology of age-related neurodegenerative diseases such as stroke and Alzheimer's disease.


Subject(s)
Blood-Brain Barrier/physiology , Gonadal Steroid Hormones/physiology , Analysis of Variance , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Connexin 43/metabolism , Female , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/physiology , Gap Junctions/drug effects , Gap Junctions/metabolism , Gap Junctions/physiology , Gonadal Steroid Hormones/metabolism , Gonadotropins/blood , Gonadotropins/physiology , Immunoblotting , Immunohistochemistry , Leuprolide/pharmacology , Luteinizing Hormone/metabolism , Luteinizing Hormone/physiology , Mice , Mice, Inbred Strains , Ovariectomy , Permeability/drug effects , Tight Junctions/drug effects , Tight Junctions/metabolism , Tight Junctions/physiology
16.
Adv Clin Chem ; 45: 139-53, 2008.
Article in English | MEDLINE | ID: mdl-18429496

ABSTRACT

For decades, Alzheimer's disease (AD) has been linked to aging, gender, and menopause. Not surprisingly, this led most investigators to focus on the role of estrogen. While undoubtedly important, estrogen is unlikely the key determinant of disease pathogenesis. Rather, it appears that estrogen may work in conjunction with a novel determinant of disease pathogenesis, namely gonadotropins. The fact that gonadotropins, specifically luteinizing hormone, play a pivotal role in disease is apparent from significant etiological, epidemiological, and pathological evidences. Moreover, targeting gonadotropins appears to have beneficial actions as a therapeutic regimen.


Subject(s)
Alzheimer Disease/physiopathology , Estrogens/physiology , Gonadotropins/physiology , Menopause , Female , Humans , Male , Sex Factors
17.
Ageing Res Rev ; 7(2): 114-25, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18373959

ABSTRACT

Epidemiological studies indicate that adult-onset asthma is initiated by stress (anxiety and depression), obesity and menopause. Ironically, despite our understanding of the various stressors that promote chronic adult-onset asthma, most of which are known to elevate cortisol production via the hypothalamic-pituitary-adrenal (HPA) axis, inhaled and systemic corticosteroids are the mainstay for the treatment of chronic asthma. This implicates other endocrine or cellular changes independent of cortisol synthesis in non-allergic adult-onset asthma. The mechanism by which corticosteroids are thought to modulate bronchial tone in relieving asthma is via corticosteroid-responsive genes that increase PGE(2) and cAMP production which promote muscle relaxation. Therefore, any physiological condition that suppresses intracellular PGE(2) and cAMP production would counter cortisol-induced muscle relaxation and potentially trigger non-allergic adult-onset asthma. Stress, obesity and menopause act on three interrelated endocrine pathways, the serotonergic, leptinergic and hypothalamic pathways, all of which operate through receptors to modulate cAMP and Ca(2+) metabolism in smooth muscle cells (SMCs). We propose that the level of SMC cAMP, as determined by overall signaling through corticosteroid receptors, leptin receptors and the GPCRs of the HPG and serotonergic pathways, will regulate bronchial tone (i.e. the 'Multi-Hit Endocrine Model of Adult-Onset Asthma'). Thus, decreases in HPG (menopause) and serotonergic (depression) signaling and increases in leptinergic (obesity) signaling relative to HPA signaling would decrease cellular SMC cAMP and promote muscle contraction. This model can explain the discrepant epidemiological data associating stress, obesity, depression and menopause with adult-onset asthma and is supported by basic and clinical data. Treatment of depressed or menopausal asthmatics with selective serotonin reuptake inhibitors or hormone replacement therapy, respectively, alleviates bronchoconstriction. Future therapeutic strategies might therefore target the serotonergic, leptinergic and hypothalamic pathways in regulating cellular cAMP production and bronchoconstriction for the treatment of adult-onset asthma.


Subject(s)
Aging/physiology , Asthma/physiopathology , Models, Biological , Adult , Age of Onset , Asthma/epidemiology , Asthma/etiology , Humans , Risk Factors , Signal Transduction/physiology , Stress, Physiological/complications , Stress, Physiological/physiopathology
18.
BMC Med Genet ; 9: 37, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18439297

ABSTRACT

Genetic and biochemical studies support the apolipoprotein E (APOE) epsilon4 allele as a major risk factor for late-onset Alzheimer's disease (AD), though ~50% of AD patients do not carry the allele. APOE transports cholesterol for luteinizing hormone (LH)-regulated steroidogenesis, and both LH and neurosteroids have been implicated in the etiology of AD. Since polymorphisms of LH beta-subunit (LHB) and its receptor (LHCGR) have not been tested for their association with AD, we scored AD and age-matched control samples for APOE genotype and 14 polymorphisms of LHB and LHCGR. Thirteen gene-gene interactions between the loci of LHB, LHCGR, and APOE were associated with AD. The most strongly supported of these interactions was between an LHCGR intronic polymorphism (rs4073366; lhcgr2) and APOE in males, which was detected using all three interaction analyses: linkage disequilibrium, multi-dimensionality reduction, and logistic regression. While the APOE epsilon4 allele carried significant risk of AD in males [p = 0.007, odds ratio (OR) = 3.08(95%confidence interval: 1.37, 6.91)], epsilon4-positive males carrying 1 or 2 C-alleles at lhcgr2 exhibited significantly decreased risk of AD [OR = 0.06(0.01, 0.38); p = 0.003]. This suggests that the lhcgr2 C-allele or a closely linked locus greatly reduces the risk of AD in males carrying an APOE epsilon4 allele. The reversal of risk embodied in this interaction powerfully supports the importance of considering the role gene-gene interactions play in the etiology of complex biological diseases and demonstrates the importance of using multiple analytic methods to detect well-supported gene-gene interactions.


Subject(s)
Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Luteinizing Hormone, beta Subunit/genetics , Mutation, Missense , Receptors, LH/genetics , Age of Onset , Aged , Aged, 80 and over , Alleles , Case-Control Studies , Chi-Square Distribution , Exons , Female , Humans , Introns , Linkage Disequilibrium , Male , Polymorphism, Genetic , Risk Factors , Sex Factors
19.
Expert Opin Investig Drugs ; 16(11): 1851-63, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17970643

ABSTRACT

Leuprolide acetate is a synthetic nonapeptide that is a potent gonadotropin-releasing hormone receptor (GnRHR) agonist used for diverse clinical applications, including the treatment of prostate cancer, endometriosis, uterine fibroids, central precocious puberty and in vitro fertilization techniques. As its basic mechanism of action, leuprolide acetate suppresses gonadotrope secretion of luteinizing hormone and follicle-stimulating hormone that subsequently suppresses gonadal sex steroid production. In addition, leuprolide acetate is presently being tested for the treatment of Alzheimer's disease, polycystic ovary syndrome, functional bowel disease, short stature, premenstrual syndrome and even as an alternative for contraception. Mounting evidence suggests that GnRH agonist suppression of serum gonadotropins may also be important in many of the clinical applications described above. Moreover, the presence of GnRHR in a multitude of non-reproductive tissues including the recent discovery of GnRHR expression in the hippocampi and cortex of the human brain indicates that GnRH analogs such as leuprolide acetate may also act directly via tissue GnRHRs to modulate (brain) function. Thus, the molecular mechanisms underlying the therapeutic effect of GnRH analogs in the treatment of these diseases may be more complex than originally thought. These observations also suggest that the potential uses of GnRH analogs in the modulation of GnRH signaling and treatment of disease has yet to be fully realized.


Subject(s)
Leuprolide/therapeutic use , Receptors, LHRH/agonists , Animals , Endometriosis/drug therapy , Female , Fertility Agents, Female/therapeutic use , Gonadotropin-Releasing Hormone/agonists , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/metabolism , Humans , Leiomyoma/drug therapy , Leuprolide/adverse effects , Leuprolide/pharmacology , Male , Prostatic Neoplasms/drug therapy , Puberty, Precocious/drug therapy
20.
Mol Cell Endocrinol ; 269(1-2): 107-11, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17376589

ABSTRACT

Questions surrounding estrogen therapy for post-menopausal cognitive decline and dementia led us to examine the role of luteinizing hormone that becomes elevated after menopause. We examined hippocampal-associated cognitive performance, as measured with the Y-maze task, in two strains of transgenic mice, one (Tg-LHbeta) which over-expresses luteinizing hormone and another (LHRKO), which has increased circulating luteinizing hormone levels, but its receptors are silenced. Our results demonstrate that Tg-LHbeta, but not LHRKO mice, show decreased Y-maze performance when compared to aged-matched wild-type animals. These findings indicate that increased luteinizing hormone levels, in the presence of functional receptors may, at least in part, be responsible for cognitive decline after menopause. As such, modulation of luteinizing hormone or its receptor levels may prove to be useful therapeutic strategies for cognitive decline associated with aging and age-related neurodegenerative diseases such as Alzheimer disease.


Subject(s)
Cognition Disorders/chemically induced , Cognition/drug effects , Luteinizing Hormone/blood , Luteinizing Hormone/pharmacology , Animals , Female , Luteinizing Hormone, beta Subunit/genetics , Male , Maze Learning/drug effects , Mice , Mice, Inbred Strains , Mice, Transgenic , Receptors, LH/genetics
SELECTION OF CITATIONS
SEARCH DETAIL