Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Hum Mol Genet ; 33(5): 400-425, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-37947217

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder caused by the reduction of survival of motor neuron (SMN) protein levels. Although three SMN-augmentation therapies are clinically approved that significantly slow down disease progression, they are unfortunately not cures. Thus, complementary SMN-independent therapies that can target key SMA pathologies and that can support the clinically approved SMN-dependent drugs are the forefront of therapeutic development. We have previously demonstrated that prednisolone, a synthetic glucocorticoid (GC) improved muscle health and survival in severe Smn-/-;SMN2 and intermediate Smn2B/- SMA mice. However, long-term administration of prednisolone can promote myopathy. We thus wanted to identify genes and pathways targeted by prednisolone in skeletal muscle to discover clinically approved drugs that are predicted to emulate prednisolone's activities. Using an RNA-sequencing, bioinformatics, and drug repositioning pipeline on skeletal muscle from symptomatic prednisolone-treated and untreated Smn-/-; SMN2 SMA and Smn+/-; SMN2 healthy mice, we identified molecular targets linked to prednisolone's ameliorative effects and a list of 580 drug candidates with similar predicted activities. Two of these candidates, metformin and oxandrolone, were further investigated in SMA cellular and animal models, which highlighted that these compounds do not have the same ameliorative effects on SMA phenotypes as prednisolone; however, a number of other important drug targets remain. Overall, our work further supports the usefulness of prednisolone's potential as a second-generation therapy for SMA, identifies a list of potential SMA drug treatments and highlights improvements for future transcriptomic-based drug repositioning studies in SMA.


Subject(s)
Drug Repositioning , Muscular Atrophy, Spinal , Mice , Animals , Pharmaceutical Preparations , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscle, Skeletal/metabolism , Gene Expression Profiling , Prednisolone/therapeutic use , Disease Models, Animal , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism
2.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 1-8, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37953591

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are the most common motoneuron diseases affecting adults and infants, respectively. ALS and SMA are both characterized by the selective degeneration of motoneurons. Although different in their genetic etiology, growing evidence indicates that they share molecular and cellular pathogenic signatures that constitute potential common therapeutic targets. We previously described a motoneuron-specific death pathway elicited by the Fas death receptor, whereby vulnerable ALS motoneurons show an exacerbated sensitivity to Fas activation. However, the mechanisms that drive the loss of SMA motoneurons remains poorly understood. Here, we describe an in vitro model of SMA-associated degeneration using primary motoneurons derived from Smn2B/- SMA mice and show that Fas activation selectively triggers death of the proximal motoneurons. Fas-induced death of SMA motoneurons has the molecular signature of the motoneuron-selective Fas death pathway that requires activation of p38 kinase, caspase-8, -9 and -3 as well as upregulation of collapsin response mediator protein 4 (CRMP4). In addition, Rho-associated Kinase (ROCK) is required for Fas recruitment. Remarkably, we found that exogenous activation of Fas also promotes axonal elongation in both wildtype and SMA motoneurons. Axon outgrowth of motoneurons promoted by Fas requires the activity of ERK, ROCK and caspases. This work defines a dual role of Fas signaling in motoneurons that can elicit distinct responses from cell death to axonal growth.


Subject(s)
Amyotrophic Lateral Sclerosis , Muscular Atrophy, Spinal , Humans , Mice , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Mice, Transgenic , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Axons/pathology
3.
Biomedicines ; 11(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37893074

ABSTRACT

The blood-brain barrier (BBB) is the specialised microvasculature system that shields the central nervous system (CNS) from potentially toxic agents. Attempts to develop therapeutic agents targeting the CNS have been hindered by the lack of predictive models of BBB crossing. In vitro models mimicking the human BBB are of great interest, and advances in induced pluripotent stem cell (iPSC) technologies and the availability of reproducible differentiation protocols have facilitated progress. In this study, we present the efficient differentiation of three different wild-type iPSC lines into brain microvascular endothelial cells (BMECs). Once differentiated, cells displayed several features of BMECs and exhibited significant barrier tightness as measured by trans-endothelial electrical resistance (TEER), ranging from 1500 to >6000 Ωcm2. To assess the functionality of our BBB models, we analysed the crossing efficiency of adeno-associated virus (AAV) vectors and peptide-conjugated antisense oligonucleotides, both currently used in genetic approaches for the treatment of rare diseases. We demonstrated superior barrier crossing by AAV serotype 9 compared to serotype 8, and no crossing by a cell-penetrating peptide-conjugated antisense oligonucleotide. In conclusion, our study shows that iPSC-based models of the human BBB display robust phenotypes and could be used to screen drugs for CNS penetration in culture.

4.
Hum Mol Genet ; 32(20): 2950-2965, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37498175

ABSTRACT

Structural, functional and molecular cardiac defects have been reported in spinal muscular atrophy (SMA) patients and mouse models. Previous quantitative proteomics analyses demonstrated widespread molecular defects in the severe Taiwanese SMA mouse model. Whether such changes are conserved across different mouse models, including less severe forms of the disease, has yet to be established. Here, using the same high-resolution proteomics approach in the less-severe Smn2B/- SMA mouse model, 277 proteins were found to be differentially abundant at a symptomatic timepoint (post-natal day (P) 18), 50 of which were similarly dysregulated in severe Taiwanese SMA mice. Bioinformatics analysis linked many of the differentially abundant proteins to cardiovascular development and function, with intermediate filaments highlighted as an enriched cellular compartment in both datasets. Lamin A/C was increased in the cardiac tissue, whereas another intermediate filament protein, desmin, was reduced. The extracellular matrix (ECM) protein, elastin, was also robustly decreased in the heart of Smn2B/- mice. AAV9-SMN1-mediated gene therapy rectified low levels of survival motor neuron protein and restored desmin levels in heart tissues of Smn2B/- mice. In contrast, AAV9-SMN1 therapy failed to correct lamin A/C or elastin levels. Intermediate filament proteins and the ECM have key roles in cardiac function and their dysregulation may explain cardiac impairment in SMA, especially since mutations in genes encoding these proteins cause other diseases with cardiac aberration. Cardiac pathology may need to be considered in the long-term care of SMA patients, as it is unclear whether currently available treatments can fully rescue peripheral pathology in SMA.


Subject(s)
Motor Neurons , Muscular Atrophy, Spinal , Humans , Mice , Animals , Motor Neurons/metabolism , Desmin/genetics , Desmin/metabolism , Elastin/genetics , Lamin Type A/genetics , Lamin Type A/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Muscular Atrophy, Spinal/pathology , Genetic Therapy , Disease Models, Animal , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism
5.
Gene Ther ; 30(12): 812-825, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37322133

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.


Subject(s)
Cytomegalovirus Infections , Muscular Atrophy, Spinal , Survival of Motor Neuron 1 Protein , Animals , Humans , Infant, Newborn , Mice , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/metabolism , Disease Models, Animal , DNA, Complementary/metabolism , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Transcription Factors/genetics , Transgenes
6.
Nutr Clin Pract ; 38(4): 871-880, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36504203

ABSTRACT

BACKGROUND: An increasing number of families with children who have spinal muscular atrophy (SMA) are incorporating a special amino acid diet into their child's feeding regimens. Characteristics of the diet include high-carbohydrate and low-fat content with added probiotics. However, because of insufficient evidenced-based research, clinicians are unable to prescribe or endorse this diet. Our aim was to assess the tolerability of an adapted version of the traditional amino acid diet in children with SMA type I. METHODS: Children with SMA type I were recruited if they were enterally fed and experienced at least one gastrointestinal symptom (reflux, vomiting, constipation, and/or diarrhea). Children were transitioned to an amino acid formula (Neocate Syneo-Nutricia) for 8 weeks. Feeding tolerance was measured weekly by telephone consultation to monitor reflux, vomiting, stool consistency, and frequency. RESULTS: Fourteen children were recruited, the mean age was 4.1 years (±1.2 SD), and 64% of participants were female. The mean resting energy expenditure determined by indirect calorimetry was 51.5 kcal/kg (±7 SD). The most common gastrointestinal complaint before switching to the amino acid formula was constipation, which was reported in 12 of 14 (85%) patients, of which 10 of the 12 (83%) children required daily stool softeners/laxatives to help regulate bowel function. After 8 weeks on the amino acid formula, 10 out of 12 (83%) children stopped or reduced constipation medication. CONCLUSION: Children with SMA type I who display gastrointestinal symptoms such as constipation and reflux may benefit from an amino acid formula that is fortified with probiotics.


Subject(s)
Gastrointestinal Diseases , Spinal Muscular Atrophies of Childhood , Humans , Child , Female , Child, Preschool , Male , Pilot Projects , Spinal Muscular Atrophies of Childhood/complications , Referral and Consultation , Telephone , Constipation/drug therapy , Constipation/etiology , Vomiting/complications , Amino Acids/therapeutic use
7.
Skelet Muscle ; 12(1): 18, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902978

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle. METHODS: We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn-/-; SMN2 and the less severe Smn2B/- SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations. RESULTS: Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak-/-, and Fn14-/- mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models. CONCLUSIONS: Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.


Subject(s)
Muscular Atrophy, Spinal , Receptors, Tumor Necrosis Factor , Animals , Cytokine TWEAK , Disease Models, Animal , Mice , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , RNA, Small Interfering/genetics , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/metabolism , TWEAK Receptor/genetics , TWEAK Receptor/metabolism , Transcription Factors/metabolism
8.
Life Sci Alliance ; 4(10)2021 10.
Article in English | MEDLINE | ID: mdl-34389686

ABSTRACT

Absence of dystrophin, an essential sarcolemmal protein required for muscle contraction, leads to the devastating muscle-wasting disease Duchenne muscular dystrophy. Dystrophin has an actin-binding domain, which binds and stabilises filamentous-(F)-actin, an integral component of the RhoA-actin-serum-response-factor-(SRF) pathway. This pathway plays a crucial role in circadian signalling, whereby the suprachiasmatic nucleus (SCN) transmits cues to peripheral tissues, activating SRF and transcription of clock-target genes. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised dystrophin loss causes circadian deficits. We show for the first time alterations in the RhoA-actin-SRF-signalling pathway, in dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios, altered MRTF levels, dysregulated core-clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from Duchenne patients harbouring an array of mutations. Furthermore, we show dystrophin is absent in the SCN of dystrophic mice which display disrupted circadian locomotor behaviour, indicative of disrupted SCN signalling. Therefore, dystrophin is an important component of the RhoA-actin-SRF pathway and novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation.


Subject(s)
Dystrophin/metabolism , Serum Response Factor/metabolism , Signal Transduction , Actins/metabolism , Animals , Cell Line , Dystrophin/genetics , Mice , Myoblasts, Skeletal/metabolism , Utrophin/metabolism , rhoA GTP-Binding Protein/metabolism
9.
JCI Insight ; 6(13)2021 07 08.
Article in English | MEDLINE | ID: mdl-34236053

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies.


Subject(s)
Harmine/pharmacology , Muscle, Skeletal , Muscular Atrophy, Spinal , Survival of Motor Neuron 1 Protein/metabolism , Animals , Cells, Cultured , Computational Biology , Disease Models, Animal , Drug Repositioning/methods , Gene Expression Profiling/methods , Humans , Mice , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Neuromuscular Agents/pharmacology , Proteomics/methods
10.
Mol Ther Nucleic Acids ; 23: 731-742, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33575118

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations in the survival motor neuron 1 (SMN1) gene. All patients have at least one copy of a paralog, SMN2, but a C-to-T transition in this gene results in exon 7 skipping in a majority of transcripts. Approved treatment for SMA involves promoting exon 7 inclusion in the SMN2 transcript or increasing the amount of full-length SMN by gene replacement with a viral vector. Increasing the pool of SMN2 transcripts and increasing their translational efficiency can be used to enhance splice correction. We sought to determine whether the 5' untranslated region (5' UTR) of SMN2 contains a repressive feature that can be targeted to increase SMN levels. We found that antisense oligonucleotides (ASOs) complementary to the 5' end of SMN2 increase SMN mRNA and protein levels and that this effect is due to inhibition of SMN2 mRNA decay. Moreover, use of the 5' UTR ASO in combination with a splice-switching oligonucleotide (SSO) increases SMN levels above those attained with the SSO alone. Our results add to the current understanding of SMN regulation and point toward a new therapeutic target for SMA.

11.
Brain Sci ; 11(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498293

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive condition that results in pathological deficiency of the survival motor neuron (SMN) protein. SMA most frequently presents itself within the first few months of life and is characterized by progressive muscle weakness. As a neuromuscular condition, it prominently affects spinal cord motor neurons and the skeletal muscle they innervate. However, over the past few decades, the SMA phenotype has expanded to include pathologies outside of the neuromuscular system. The current therapeutic SMA landscape is at a turning point, whereby a holistic multi-systemic approach to the understanding of disease pathophysiology is at the forefront of fundamental research and translational endeavours. In particular, there has recently been a renewed interest in body composition and metabolism in SMA patients, specifically that of fatty acids. Indeed, there is increasing evidence of aberrant fat distribution and fatty acid metabolism dysfunction in SMA patients and animal models. This review will explore fatty acid metabolic defects in SMA and discuss how dietary interventions could potentially be used to modulate and reduce the adverse health impacts of these perturbations in SMA patients.

12.
Cells ; 9(11)2020 11 03.
Article in English | MEDLINE | ID: mdl-33153033

ABSTRACT

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by decreased levels of the survival of motoneuron (SMN) protein. Post-translational mechanisms for regulation of its stability are still elusive. Thus, we aimed to identify regulatory phosphorylation sites that modulate function and stability. Our results show that SMN residues S290 and S292 are phosphorylated, of which SMN pS290 has a detrimental effect on protein stability and nuclear localization. Furthermore, we propose that phosphatase and tensin homolog (PTEN), a novel phosphatase for SMN, counteracts this effect. In light of recent advancements in SMA therapies, a significant need for additional approaches has become apparent. Our study demonstrates S290 as a novel molecular target site to increase the stability of SMN. Characterization of relevant kinases and phosphatases provides not only a new understanding of SMN function, but also constitutes a novel strategy for combinatorial therapeutic approaches to increase the level of SMN in SMA.


Subject(s)
Amino Acids/metabolism , PTEN Phosphohydrolase/metabolism , Survival of Motor Neuron 1 Protein/chemistry , Survival of Motor Neuron 1 Protein/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans , Cell Line, Tumor , Cell Nucleus/metabolism , Gene Knockdown Techniques , Humans , Mice , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation , Phosphoserine/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Stability , Proteolysis , Structure-Activity Relationship
13.
Brain Sci ; 10(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932920

ABSTRACT

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), severely impact the function of neuronal cells in the brain and have devastating consequences on the quality of life of patients and their families [...].

14.
Neuroscience ; 435: 33-43, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32234507

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that selectively affects upper and lower motoneurons. Dismantlement of the neuromuscular junction (NMJ) is an early pathological hallmark of the disease whose cellular origin remains still debated. We developed an in vitro NMJ model to investigate the differential contribution of motoneurons and muscle cells expressing ALS-causing mutation in the superoxide dismutase 1 (SOD1) to neuromuscular dysfunction. The primary co-culture system allows the formation of functional NMJs and fosters the expression of the ALS-sensitive fast fatigable type II-b myosin heavy chain (MHC) isoform. Expression of SOD1G93A in myotubes does not prevent the formation of a functional NMJ but leads to decreased contraction frequency and lowers the slow type I MHC isoform transcript levels. Expression of SOD1G93A in both motoneurons and myotubes or in motoneurons alone however alters the formation of a functional NMJ. Our results strongly suggest that motoneurons are a major factor involved in the process of NMJ dismantlement in an experimental model of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Motor Neurons , Muscle Fibers, Skeletal , Mutation , Superoxide Dismutase/genetics , Superoxide Dismutase-1/genetics
15.
Ann Clin Transl Neurol ; 6(8): 1519-1532, 2019 08.
Article in English | MEDLINE | ID: mdl-31402618

ABSTRACT

OBJECTIVE: Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder leading to paralysis and subsequent death in young children. Initially considered a motor neuron disease, extra-neuronal involvement is increasingly recognized. The primary goal of this study was to investigate alterations in lipid metabolism in SMA patients and mouse models of the disease. METHODS: We analyzed clinical data collected from a large cohort of pediatric SMA type I-III patients as well as SMA type I liver necropsy data. In parallel, we performed histology, lipid analysis, and transcript profiling in mouse models of SMA. RESULTS: We identify an increased susceptibility to developing dyslipidemia in a cohort of 72 SMA patients and liver steatosis in pathological samples. Similarly, fatty acid metabolic abnormalities were present in all SMA mouse models studied. Specifically, Smn2B/- mice displayed elevated hepatic triglycerides and dyslipidemia, resembling non-alcoholic fatty liver disease (NAFLD). Interestingly, this phenotype appeared prior to denervation. INTERPRETATION: This work highlights metabolic abnormalities as an important feature of SMA, suggesting implementation of nutritional and screening guidelines in patients, as such defects are likely to increase metabolic distress and cardiovascular risk. This study emphasizes the need for a systemic therapeutic approach to ensure maximal benefits for all SMA patients throughout their life.


Subject(s)
Dyslipidemias/etiology , Fatty Acids/genetics , Fatty Acids/metabolism , Fatty Liver/etiology , Muscular Atrophy, Spinal/complications , Animals , Child , Child, Preschool , Disease Models, Animal , Dyslipidemias/genetics , Dyslipidemias/metabolism , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Humans , Infant , Lipid Metabolism/genetics , Male , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Survival of Motor Neuron 1 Protein/genetics , Triglycerides/metabolism
16.
Gene Ther ; 27(10-11): 505-515, 2019 11.
Article in English | MEDLINE | ID: mdl-32313099

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the survival motor neuron (SMN) gene. While there are currently two approved gene-based therapies for SMA, availability, high cost, and differences in patient response indicate that alternative treatment options are needed. Optimal therapeutic strategies will likely be a combination of SMN-dependent and -independent treatments aimed at alleviating symptoms in the central nervous system and peripheral muscles. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates key metabolic and ergogenic pathways in muscle. We have recently reported significant downregulation of Klf15 in muscle of presymptomatic SMA mice. Importantly, perinatal upregulation of Klf15 via transgenic and pharmacological methods resulted in improved disease phenotypes in SMA mice, including weight and survival. In the current study, we designed an adeno-associated virus serotype 8 (AAV8) vector to overexpress a codon-optimized Klf15 cDNA under the muscle-specific Spc5-12 promoter (AAV8-Klf15). Administration of AAV8-Klf15 to severe Taiwanese Smn-/-;SMN2 or intermediate Smn2B/- SMA mice significantly increased Klf15 expression in muscle. We also observed significant activity of the AAV8-Klf15 vector in liver and heart. AAV8-mediated Klf15 overexpression moderately improved survival in the Smn2B/- model but not in the Taiwanese mice. An inability to specifically induce Klf15 expression at physiological levels in a time- and tissue-dependent manner may have contributed to this limited efficacy. Thus, our work demonstrates that an AAV8-Spc5-12 vector induces high gene expression as early as P2 in several tissues including muscle, heart, and liver, but highlights the challenges of achieving meaningful vector-mediated transgene expression of Klf15.


Subject(s)
Dependovirus , Muscular Atrophy, Spinal , Animals , Dependovirus/genetics , Disease Models, Animal , Humans , Kruppel-Like Transcription Factors/genetics , Mice , Mice, Transgenic , Muscles , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Serogroup , Survival of Motor Neuron 1 Protein/genetics
17.
Brain Sci ; 8(12)2018 12 04.
Article in English | MEDLINE | ID: mdl-30518112

ABSTRACT

Unravelling the complex molecular pathways responsible for motor neuron degeneration in amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) remains a persistent challenge. Interest is growing in the potential molecular similarities between these two diseases, with the hope of better understanding disease pathology for the guidance of therapeutic development. The aim of this study was to conduct a comparative analysis of published proteomic studies of ALS and SMA, seeking commonly dysregulated molecules to be prioritized as future therapeutic targets. Fifteen proteins were found to be differentially expressed in two or more proteomic studies of both ALS and SMA, and bioinformatics analysis identified over-representation of proteins known to associate in vesicles and molecular pathways, including metabolism of proteins and vesicle-mediated transport-both of which converge on endoplasmic reticulum (ER)-Golgi trafficking processes. Calreticulin, a calcium-binding chaperone found in the ER, was associated with both pathways and we independently confirm that its expression was decreased in spinal cords from SMA and increased in spinal cords from ALS mice. Together, these findings offer significant insights into potential common targets that may help to guide the development of new therapies for both diseases.

18.
Hum Mol Genet ; 27(20): 3582-3597, 2018 10 15.
Article in English | MEDLINE | ID: mdl-29982483

ABSTRACT

Physiology and behaviour are critically dependent on circadian regulation via a core set of clock genes, dysregulation of which leads to metabolic and sleep disturbances. Metabolic and sleep perturbations occur in spinal muscular atrophy (SMA), a neuromuscular disorder caused by loss of the survival motor neuron (SMN) protein and characterized by motor neuron loss and muscle atrophy. We therefore investigated the expression of circadian rhythm genes in various metabolic tissues and spinal cord of the Taiwanese Smn-/-;SMN2 SMA animal model. We demonstrate a dysregulated expression of the core clock genes (clock, ARNTL/Bmal1, Cry1/2, Per1/2) and clock output genes (Nr1d1 and Dbp) in SMA tissues during disease progression. We also uncover an age- and tissue-dependent diurnal expression of the Smn gene. Importantly, we observe molecular and phenotypic corrections in SMA mice following direct light modulation. Our study identifies a key relationship between an SMA pathology and peripheral core clock gene dysregulation, highlights the influence of SMN on peripheral circadian regulation and metabolism and has significant implications for the development of peripheral therapeutic approaches and clinical care management of SMA patients.


Subject(s)
Circadian Rhythm/radiation effects , Gene Expression Regulation , Light , Muscular Atrophy, Spinal/metabolism , Animals , Circadian Rhythm/genetics , Disease Models, Animal , Disease Progression , Female , Gene Knockout Techniques , Male , Mice , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/physiopathology , Survival of Motor Neuron 1 Protein/genetics
19.
EBioMedicine ; 31: 226-242, 2018 May.
Article in English | MEDLINE | ID: mdl-29735415

ABSTRACT

The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn-/-;SMN2 and Smn2B/- mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling.


Subject(s)
Amino Acids, Branched-Chain/pharmacology , DNA-Binding Proteins , Dietary Supplements , Muscular Atrophy, Spinal , Prednisolone/pharmacology , Signal Transduction/drug effects , Transcription Factors , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Models, Animal , Kruppel-Like Transcription Factors , Mice , Mice, Knockout , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Eur J Med Genet ; 61(11): 685-698, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29313812

ABSTRACT

Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are the two most common motoneuron disorders, which share typical pathological hallmarks while remaining genetically distinct. Indeed, SMA is caused by deletions or mutations in the survival motor neuron 1 (SMN1) gene whilst ALS, albeit being mostly sporadic, can also be caused by mutations within genes, including superoxide dismutase 1 (SOD1), Fused in Sarcoma (FUS), TAR DNA-binding protein 43 (TDP-43) and chromosome 9 open reading frame 72 (C9ORF72). However, it has come to light that these two diseases may be more interlinked than previously thought. Indeed, it has recently been found that FUS directly interacts with an Smn-containing complex, mutant SOD1 perturbs Smn localization, Smn depletion aggravates disease progression of ALS mice, overexpression of SMN in ALS mice significantly improves their phenotype and lifespan, and duplications of SMN1 have been linked to sporadic ALS. Beyond genetic interactions, accumulating evidence further suggests that both diseases share common pathological identities such as intrinsic muscle defects, neuroinflammation, immune organ dysfunction, metabolic perturbations, defects in neuron excitability and selective motoneuron vulnerability. Identifying common molecular effectors that mediate shared pathologies in SMA and ALS would allow for the development of therapeutic strategies and targeted gene therapies that could potentially alleviate symptoms and be equally beneficial in both disorders. In the present review, we will examine our current knowledge of pathogenic commonalities between SMA and ALS, and discuss how furthering this understanding can lead to the establishment of novel therapeutic approaches with wide-reaching impact on multiple motoneuron diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/therapy , Animals , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , Humans , Mice , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/therapy , RNA-Binding Protein FUS/genetics , Superoxide Dismutase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...