Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
ACS Chem Neurosci ; 14(24): 4395-4408, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38050862

ABSTRACT

Abnormal cytosolic aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is observed in multiple diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration, and Alzheimer's disease. Previous studies have shown that TDP-43307-319 located at the C-terminal of TDP-43 can form higher-order oligomers and fibrils. Of particular interest are the hexamers that adopt a cylindrin structure that has been strongly correlated to neurotoxicity. In this study, we use the joint pharmacophore space (JPS) model to identify and generate potential TDP-43 inhibitors. Five JPS-designed molecules are evaluated using both experimental and computational methods: ion mobility mass spectrometry, thioflavin T fluorescence assay, circular dichroism spectroscopy, atomic force microscopy, and molecular dynamics simulations. We found that all five molecules can prevent the amyloid fibril formation of TDP-43307-319, but their efficacy varies significantly. Furthermore, among the five molecules, [AC0101] is the most efficient in preventing the formation of higher-order oligomers and dissociating preformed higher-order oligomers. Molecular dynamics simulations show that [AC0101] both is the most flexible and forms the most hydrogen bonds with the TDP-43307-319 monomer. The JPS-designed molecules can insert themselves between the ß-strands in the hexameric cylindrin structure of TDP-43307-319 and can open its structure. Possible mechanisms for JPS-designed molecules to inhibit and dissociate TDP-43307-319 oligomers on an atomistic scale are proposed.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism
2.
Biophys J ; 122(22): 4370-4381, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37853696

ABSTRACT

The RNA-binding protein TDP-43 is associated with mRNA processing and transport from the nucleus to the cytoplasm. TDP-43 localizes in the nucleus as well as accumulating in cytoplasmic condensates such as stress granules. Aggregation and formation of amyloid-like fibrils of cytoplasmic TDP-43 are hallmarks of numerous neurodegenerative diseases, most strikingly present in >90% of amyotrophic lateral sclerosis (ALS) patients. If excessive accumulation of cytoplasmic TDP-43 causes, or is caused by, neurodegeneration is presently not known. In this work, we use molecular dynamics simulations at multiple resolutions to explore TDP-43 self- and cross-interaction dynamics. A full-length molecular model of TDP-43, all 414 amino acids, was constructed from select structures of the protein functional domains (N-terminal domain, and two RNA recognition motifs, RRM1 and RRM2) and modeling of disordered connecting loops and the low complexity glycine-rich C-terminus domain. All-atom CHARMM36m simulations of single TDP-43 proteins served as guides to construct a coarse-grained Martini 3 model of TDP-43. The Martini model and a coarser implicit solvent C⍺ model, optimized for disordered proteins, were subsequently used to probe TDP-43 interactions; self-interactions from single-chain full-length TDP-43 simulations, cross-interactions from simulations with two proteins and simulations with assemblies of dozens to hundreds of proteins. Our findings illustrate the utility of different modeling scales for accessing TDP-43 molecular-level interactions and suggest that TDP-43 has numerous interaction preferences or patterns, exhibiting an overall strong, but dynamic, association and driving the formation of biomolecular condensates.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Protein Domains , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Molecular Dynamics Simulation , Amyloid
3.
ACS Chem Neurosci ; 14(15): 2717-2726, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37442126

ABSTRACT

Alzheimer's disease (AD) is one of the world's most pressing health crises. AD is an incurable disease affecting more than 6.5 million Americans, predominantly the elderly, and in its later stages, leads to memory loss, dementia, and death. Amyloid ß (Aß) protein aggregates have been one of the pathological hallmarks of AD since its initial characterization. The early stages of Aß accumulation and aggregation involve the formation of oligomers, which are considered neurotoxic and play a key role in further aggregation into fibrils that eventually appear in the brain as amyloid plaques. We have recently shown by combining ion mobility mass spectrometry (IM-MS) and atomic force microscopy (AFM) that Aß42 rapidly forms dodecamers (12-mers) as the terminal oligomeric state, and these dodecamers seed the early formation of Aß42 protofibrils. The link between soluble oligomers and fibril formation is one of the essential aspects for understanding the root cause of the disease state and is critical to developing therapeutic interventions. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These small molecules were generated based on crucial chemical features necessary for target selectivity. In this paper, we utilize our combined IM-MS and AFM methods to investigate the impact of three second-generation JPS small-molecule inhibitors, AC0201, AC0202, and AC0203, on dodecamer as well as fibril formation in Aß42. Our results indicate that AC0201 works well as an inhibitor and remodeler of both dodecamers and fibril formation, AC0203 behaves less efficiently, and AC0202 is ineffective.


Subject(s)
Alzheimer Disease , Amyloidosis , Humans , Aged , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , Amyloid/metabolism , Peptide Fragments/metabolism
4.
J Phys Chem B ; 127(18): 4022-4031, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37129599

ABSTRACT

The intrinsically disordered protein Tau represents the main component of neurofibrillary tangles that are a hallmark of Alzheimer's disease. A small fragment of Tau, known as paired helical filament 6 (PHF6), is considered to be important for the formation of the ß-structure core of the fibrils. Here we study the aggregation of this fragment in the presence of different cosolutes, including urea, TMAO, sucrose and 2-hydroxypropyl-ß-cyclodextrin (2-HPßCD), using both experiments and molecular dynamics simulations. A novel implicit solvation approach (MIST - Model with Implicit Solvation Thermodynamics) is used, where an energetic contribution based on the concept of transfer free energies describes the effect of the cosolutes. The simulation predictions are compared to thioflavin-T and atomic force microscopy results, and the good agreement observed confirms the predictive ability of the computational approach herein proposed. Both simulations and experiments indicate that PHF6 aggregation is inhibited in the presence of urea and 2-HPßCD, while TMAO and sucrose stabilize associated conformations. The remarkable ability of HPßCD to inhibit aggregation represents an extremely promising result for future applications, especially considering the widespread use of this molecule as a drug carrier to the brain and as a solubilizer/excipient in pharmaceutical formulations.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Molecular Dynamics Simulation , Urea
5.
J Phys Chem C Nanomater Interfaces ; 126(42): 17975-17982, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36330165

ABSTRACT

We probe the adsorption of molecular H2O on a TiO2 (110)-(1 × 1) surface decorated with isolated VO clusters using ultrahigh-vacuum scanning tunneling microscopy (UHV-STM) and temperature-programmed desorption (TPD). Our STM images show that preadsorbed VO clusters on the TiO2 (110)-(1 × 1) surface induce the adsorption of H2O molecules at room temperature (RT). The adsorbed H2O molecules form strings of beads of H2O dimers bound to the 5-fold coordinated Ti atom (5c-Ti) rows and are anchored by VO. This RT adsorption is completely reversible and is unique to the VO-decorated TiO2 surface. TPD spectra reveal two new desorption states for VO stabilized H2O at 395 and 445 K, which is in sharp contrast to the desorption of water due to recombination of hydroxyl groups at 490 K from clean TiO2(110)-(1 × 1) surfaces. Density functional theory (DFT) calculations show that the binding energy of molecular H2O to the VO clusters on the TiO2 (110)-(1 × 1) surface is higher than binding to the bare surface by 0.42 eV, and the resulting H2O-VO-TiO2 (110) complex provides the anchor point for adsorption of the string of beads of H2O dimers.

6.
J Am Chem Soc ; 144(32): 14614-14626, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35917596

ABSTRACT

Amyloid ß (Aß) protein is responsible for Alzheimer's disease, and one of its important fragments, Aß(25-35), is found in the brain and has been shown to be neurotoxic. Tachykinin neuropeptides, including Neuromedin K (NK), Kassinin, and Substance P, have been reported to reduce Aß(25-35)'s toxicity in cells even though they share similar primary structures with Aß(25-35). Here, we seek to understand the molecular mechanisms of how these peptides interact with Aß(25-35) and to shed light on why some peptides with similar primary structures are toxic and others nontoxic. We use both experimental and computational methods, including ion mobility mass spectrometry and enhanced-sampling replica-exchange molecular dynamics simulations, to study the aggregation pathways of Aß(25-35), NK, Kassinin, Substance P, and mixtures of the latter three with Aß(25-35). NK and Substance P were observed to remove the higher-order oligomers (i.e., hexamers and dodecamers) of Aß(25-35), which are related to its toxicity, although Substance P did so more slowly. In contrast, Kassinin was found to promote the formation of these higher-order oligomers. This result conflicts with what is expected and is elaborated on in the text. We also observe that even though they have significant structural homology with Aß(25-35), NK, Kassinin, and Substance P do not form hexamers with a ß-sheet structure like Aß(25-35). The hexamer structure of Aß(25-35) has been identified as a cylindrin, and this structure has been strongly correlated to toxic species. The reasons why the three tachykinin peptides behave so differently when mixed with Aß(25-35) are discussed.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Tachykinins , Alzheimer Disease/metabolism , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Humans , Kassinin/chemistry , Peptide Fragments/chemistry , Substance P/chemistry , Tachykinins/chemistry
7.
J Am Chem Soc ; 143(9): 3494-3502, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33621087

ABSTRACT

Protein aggregation is a common feature in prominent neurodegenerative diseases, usually thought to be due to the assembly of a single peptide or protein. Recent studies have challenged this notion and suggested several proteins may be involved in promoting and amplifying disease. For example, the TDP-43 protein associated with Amyotrophic Lateral Sclerosis has been found in the brain along with Aß assemblies associated with Alzheimer's disease, and those patients that show the presence of TDP-43 are 10 times more likely to demonstrate cognitive impairment compared to TDP-43-negative Alzheimer's patients. Here we examine the interactions between the amyloidogenic core of TDP-43, TDP-43307-319, and a neurotoxic physiologically observed fragment of Aß, Aß25-35. Utilizing ion mobility mass spectrometry in concert with atomic force microscopy and molecular dynamics simulations, we investigate which oligomers are involved in seeding aggregation across these two different protein systems and gain insight into which structures initiate and result from these interactions. Studies were conducted by mixing Aß25-35 with the toxic wild type TDP-43307-319 peptide and with the nontoxic synthetic TDP-43307-319 mutant, G314V. Our findings identify a strong catalytic effect of TDP-43307-319 WT monomer in the acceleration of Aß25-35 aggregation to its toxic cylindrin and ß barrel forms. This observation is unprecedented in both its speed and specificity. Interestingly, the nontoxic G314V mutant of TDP-43307-319 and dimers or higher order oligomers of WT TDP-43307-319 do not promote aggregation of Aß25-35 but rather dissociate preformed toxic higher order oligomers of Aß25-35. Reasons for these very different behaviors are reported.


Subject(s)
Amyloid beta-Peptides/metabolism , DNA-Binding Proteins/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/etiology , Amyloid beta-Peptides/chemistry , Amyotrophic Lateral Sclerosis/etiology , Binding Sites , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Humans , Hydrogen Bonding , Mass Spectrometry/methods , Microscopy, Atomic Force , Molecular Dynamics Simulation , Mutation , Peptide Fragments/chemistry , Protein Binding/genetics , Protein Multimerization/genetics
8.
J Phys Chem B ; 124(37): 8012-8022, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32790375

ABSTRACT

Variational autoencoders are artificial neural networks with the capability to reduce highly dimensional sets of data to smaller dimensional, latent representations. In this work, these models are applied to molecular dynamics simulations of the self-assembly of coarse-grained peptides to obtain a singled-valued order parameter for amyloid aggregation. This automatically learned order parameter is constructed by time-averaging the latent parametrizations of internal coordinate representations and compared to the nematic order parameter which is commonly used to study ordering of similar systems in literature. It is found that the latent space value provides more tailored insight into the aggregation mechanism's details, correctly identifying fibril formation in instances where the nematic order parameter fails to do so. A means is provided by which the latent space value can be analyzed so that the major contributing internal coordinates are identified, allowing for a direct interpretation of the latent space order parameter in terms of the behavior of the system. The latent model is found to be an effective and convenient way of representing the data from the dynamic ensemble and provides a means of reducing the dimensionality of a system whose scale exceeds molecular systems so-far considered with similar tools. This bypasses a need for researcher speculation on what elements of a system best contribute to summarizing major transitions and suggests latent models are effective and insightful when applied to large systems with a diversity of complex behaviors.


Subject(s)
Molecular Dynamics Simulation , Peptides , Amyloid , Neural Networks, Computer
9.
J Phys Chem B ; 124(40): 8772-8783, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32816481

ABSTRACT

Aberrant protein folding leading to the formation of characteristic cross-ß-sheet-rich amyloid structures is well known for its association with a variety of debilitating human diseases. Often, depending upon amino acid composition, only a small segment of a large protein participates in amyloid formation and is in fact capable of self-assembling into amyloid, independent of the rest of the protein. Therefore, such peptide fragments serve as useful model systems for understanding the process of amyloid formation. An important factor that has often been overlooked while using peptides to mimic full-length protein is the charge on the termini of these peptides. Here, we show the influence of terminal charges on the aggregation of an amyloidogenic peptide from microtubule-associated protein Tau, implicated in Alzheimer's disease and tauopathies. We found that modification of terminal charges by capping the peptide at one or both of the termini drastically modulates the fibrillation of the hexapeptide sequence paired helical filament 6 (PHF6) from repeat 3 of Tau, both with and without heparin. Without heparin, the PHF6 peptide capped at both termini and PHF6 capped only at the N-terminus self-assembled to form amyloid fibrils. With heparin, all capping variants of PHF6, except for PHF6 with both termini free, formed typical amyloid fibrils. However, the rate and extent of aggregation both with and without heparin as well as the morphology of aggregates were found to be highly dependent on the terminal charges. Our molecular dynamics simulations on PHF6 capping variants corroborated our experiments and provided critical insights into the mechanism of PHF6 self-assembly. Overall, our results emphasize the importance of terminal modifications in fibrillation of small peptide fragments and provide significant insights into the aggregation of a small Tau fragment, which is considered essential for Tau filament assembly.


Subject(s)
Alzheimer Disease , tau Proteins , Amyloid , Humans , Peptide Fragments/genetics , Peptides , Protein Conformation, beta-Strand , tau Proteins/genetics , tau Proteins/metabolism
10.
Biochemistry ; 59(4): 499-508, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31846303

ABSTRACT

TDP-43 aggregates are a salient feature of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and a variety of other neurodegenerative diseases, including Alzheimer's disease (AD). With an anticipated growth in the most susceptible demographic, projections predict neurodegenerative diseases will potentially affect 15 million people in the United States by 2050. Currently, there are no cures for ALS, FTD, or AD. Previous studies of the amyloidogenic core of TDP-43 have demonstrated that oligomers greater than a trimer are associated with toxicity. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These molecules were generated on the basis of key chemical features necessary for blood-brain barrier permeability, low adverse side effects, and target selectivity. Combining ion-mobility mass spectrometry and atomic force microscopy with the JPS computational method allows us to more efficiently evaluate a potential drug's efficacy in disrupting the development of putative toxic species. Our results demonstrate the dissociation of higher-order oligomers in the presence of these novel JPS-generated inhibitors into smaller oligomer species. Additionally, drugs approved by the Food and Drug Administration for the treatment of ALS were also evaluated and demonstrated to maintain higher-order oligomeric assemblies. Possible mechanisms for the observed action of the JPS molecules are discussed.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , TDP-43 Proteinopathies/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Blood-Brain Barrier/metabolism , Computational Biology/methods , Drug Design , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Ion Mobility Spectrometry/methods , Microscopy, Atomic Force/methods , Mutation
11.
ACS Chem Neurosci ; 10(11): 4757-4765, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31642657

ABSTRACT

The aberrant association of proteins/peptides is implicated in the etiology and pathogenesis of a variety of human diseases. In general, the primary protein component responsible for the formation of aggregates is different in each case and is specific to a particular disease condition. However, there are instances where multiple protein aggregates have been found to coexist in the same or different tissue(s), thereby leading to mixed pathologies and exacerbation of disease symptoms. In this context, a strong link has been established between Alzheimer's disease (AD) and type 2 diabetes (T2D). However, the underlying molecular details still remain elusive. Here, we report the direct interaction of an AD-associated amyloidogenic cytotoxic fragment of Tau (R3:306-336) with islet amyloid polypeptide (IAPP) implicated in T2D. Using ion-mobility mass spectrometry (IM-MS) in conjunction with fluorescence spectroscopy, circular dichroism, and transmission electron microscopy, we have been able to provide critical mechanistic insights into these interactions. Our IM-MS data showed the formation of hetero-oligomers of R3 and IAPP. Additionally, using IM-MS, we found that the amyloidogenic extended beta hairpin conformation of IAPP is favored much more in the R3-IAPP mixture, when compared with IAPP alone. Furthermore, we found that the oligomerization of R3 occurs much faster in the presence of IAPP. We also observed a secondary nucleation step in our kinetics data for the R3-IAPP mixture. We believe that the secondary nucleation step is demonstrative of R3 aggregation which otherwise requires the presence of anionic cofactors. Our results provide the first experimental evidence for direct molecular interaction between Tau and IAPP and highlights the repercussion of possible "prion-like" cross-talk in the proliferation of diseases that are associated with different tissues/organs.


Subject(s)
Alzheimer Disease/metabolism , Amyloid/metabolism , Diabetes Mellitus, Type 2/metabolism , Peptide Fragments/metabolism , Prion Proteins/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Amino Acid Sequence , Amyloid/chemistry , Amyloid/genetics , Catalysis , Diabetes Mellitus, Type 2/genetics , Humans , Peptide Fragments/chemistry , Peptide Fragments/genetics , Prion Proteins/chemistry , Prion Proteins/genetics , Protein Aggregates/physiology , Protein Structure, Secondary , tau Proteins/chemistry , tau Proteins/genetics
12.
ACS Chem Neurosci ; 10(9): 4112-4123, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31430111

ABSTRACT

Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a salient feature of amyotrophic lateral sclerosis (ALS), a debilitating neurodegenerative disorder affecting over 200 000 people worldwide. The protein undergoes both functional and pathogenic aggregation; the latter is irreversible and hypothesized to produce soluble oligomers that are toxic to neurons in addition to inclusions made of stable fibrous deposits. Despite progress made toward identifying disease-related proteins, the underlying pathogenic mechanism associated with these toxic oligomers remains elusive. Utilizing a multimodal approach that combines several measurement techniques (circular dichroism (CD), thioflavin T spectroscopy (ThT), Fourier transform infrared spectroscopy (FTIR)) and high spatial resolution imaging tools (electron microscopy (EM) and atomic force microscopy (AFM)), with soft ion mobility mass spectrometry (IM-MS) and atomistic molecular dynamics (MD) simulations, we explore the oligomerization mechanisms, structures, and assembly pathways of TDP-43307-319. This fragment is both amyloidogenic and toxic and is within the glycine-rich C-terminal domain essential for both toxicity and aggregation of the full-length protein. In addition to the wild-type peptide, two ALS-related mutants (A315T and A315E) and a non-axon-toxic mutant (G314V) were investigated to determine how mutations affect the oligomerization of TDP-43307-319 and structures of toxic oligomers. The results of our study provide new insights into how ALS-related mutants, A315T and A315E, accelerate or alter the pathogenic mechanism and highlight the role of an internal glycine, G314, in maintaining efficient packing known to be critical for functional oligomer assembly. More importantly, our data demonstrate that G314 plays a vital role in TDP-43 assembly and prevents cytotoxicity via its unique aversion to oligomers larger than trimer. Our observation is consistent with previous studies showing that G314V mutation of the full-length TDP-43 induced remediation of both axonotoxicity and neuronal apoptosis. Our findings reveal a distinct aggregation mechanism for each peptide and elucidate oligomeric species and possible structures that may be involved in the pathology of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Circular Dichroism/methods , Glycine/metabolism , Humans , Microscopy, Atomic Force/methods , Neurons/metabolism
13.
J Phys Chem B ; 123(25): 5256-5264, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31150250

ABSTRACT

Despite the importance of amyloid formation in disease pathology, the understanding of the primary structure?activity relationship for amyloid-forming peptides remains elusive. Here we use a new neural-network based method of analysis: the classifying autoencoder (CAE). This machine learning technique uses specialized architecture of artificial neural networks to provide insight into typically opaque classification processes. The method proves to be robust to noisy and limited data sets, as well as being capable of disentangling relatively complicated rules over data sets. We demonstrate its capabilities by applying the technique to an experimental database (the Waltz database) and demonstrate the CAE?s capability to provide insight into a novel descriptor, dimeric isotropic deviation?an experimental measure of the aggregation properties of the amino acids. We measure this value for all 20 of the common amino acids and find correlation between dimeric isotropic deviation and the failure to form amyloids when hydrophobic effects are not a primary driving force in amyloid formation. These applications show the value of the new method and provide a flexible and general framework to approach problems in biochemistry using artificial neural networks.


Subject(s)
Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Machine Learning , Peptides/chemistry , Amino Acids/chemistry , Amino Acids/metabolism , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , Databases, Factual , Dimerization , Hydrophobic and Hydrophilic Interactions , Peptides/metabolism , Protein Aggregates
15.
Angew Chem Int Ed Engl ; 58(24): 8216-8220, 2019 06 11.
Article in English | MEDLINE | ID: mdl-30958917

ABSTRACT

More than 100 hydrophobicity scales have been introduced, with each being based on a distinct condensed-phase approach. However, a comparison of the hydrophobicity values gained from different techniques, and their relative ranking, is not straightforward, as the interactions between the environment and the amino acid are unique to each method. Here, we overcome this limitation by studying the properties of amino acids in the clean-room environment of the gas phase. In the gas phase, entropic contributions from the hydrophobic effect are by default absent and only the polarity of the side chain dictates the self-assembly. This allows for the derivation of a novel hydrophobicity scale, which is based solely on the interaction between individual amino acid units within the cluster and thus more accurately reflects the intrinsic nature of a side chain. This principle can be further applied to classify non-natural derivatives, as shown here for fluorinated amino acid variants.

16.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Article in English | MEDLINE | ID: mdl-30707468

ABSTRACT

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

17.
J Am Soc Mass Spectrom ; 30(1): 85-93, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29713966

ABSTRACT

Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid ß-protein, particularly the 42-residue alloform (Aß42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aß inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aß42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aß42, destabilizes preformed fibrils, and reverses Aß42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development. Graphical Abstract.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Drug Design , Ion Mobility Spectrometry/methods , Models, Molecular , Nitriles/pharmacology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Pyrrolidines/pharmacology , Alzheimer Disease/drug therapy , Blood-Brain Barrier/drug effects , Drug Evaluation, Preclinical/methods , Humans , Machine Learning , Microscopy, Atomic Force
18.
J Phys Chem B ; 122(43): 9852-9859, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30299960

ABSTRACT

Type-2 diabetes mellitus (T2DM) is a disease hallmarked by improper homeostasis within the islets of Langerhans of the pancreas. The most critical species affected is insulin, which is produced by the ß-cells of the islets, but there are a number of other species copackaged and cosecreted within the insulin granules. This includes zinc, which exists in high (millimolar) concentrations within the ß-cells, and islet amyloid polypeptide (IAPP), which is an amyloid peptide thought to induce ß-cell apoptosis through self-association into toxic amyloid oligomers. Zinc is essential in the packaging of crystalline insulin within the vesicles but it can also bind and interact with IAPP. This implies a complex relationship between all three species and diabetes, particularly in the structure and function of toxic IAPP aggregates. Atypical (low or high) concentrations of zinc generally appear to correlate with increased hIAPP aggregation, whereas physiological zinc concentrations have an inhibitory effect. To better understand how zinc ions alter the monomer and oligomer structure of hIAPP in vitro, we employ a combination of ion mobility mass spectrometry and atomic force microscopy. We observe an increase in the extended ß-hairpin conformation of hIAPP when it is bound to zinc. With sufficiently low concentrations of zinc this could result in an association site for zinc-free hIAPP, promoting amyloid aggregation. At high zinc concentrations, we see the appearance of a secondary zinc association site whose coordination could account for the loss of inhibition at high zinc concentrations. Generally, it appears that zinc preferentially stabilizes the ß-hairpin conformation of hIAPP and the population of zinc-bound hIAPP in solution determines what effect this has on amyloid aggregation.


Subject(s)
Amyloid/metabolism , Islet Amyloid Polypeptide/chemistry , Zinc/chemistry , Humans , Islet Amyloid Polypeptide/metabolism , Mass Spectrometry , Microscopy, Atomic Force , Protein Conformation, beta-Strand
19.
Phys Chem Chem Phys ; 20(34): 22047-22057, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30112548

ABSTRACT

Proteins and peptides in nature are almost exclusively made from l-amino acids, and this is even more absolute in the metazoan. With the advent of modern bioanalytical techniques, however, previously unappreciated roles for d-amino acids in biological processes have been revealed. Over 30 d-amino acid containing peptides (DAACPs) have been discovered in animals where at least one l-residue has been isomerized to the d-form via an enzyme-catalyzed process. In Aplysia californica, GdFFD and GdYFD (the lower-case letter "d" indicates a d-amino acid residue) modulate the feeding behavior by activating the Aplysia achatin-like neuropeptide receptor (apALNR). However, little is known about how the three-dimensional conformation of DAACPs influences activity at the receptor, and the role that d-residues play in these peptide conformations. Here, we use a combination of computational modeling, drift-tube ion-mobility mass spectrometry, and receptor activation assays to create a simple model that predicts bioactivities for a series of GdFFD analogs. Our results suggest that the active conformations of GdFFD and GdYFD are similar to their lowest energy conformations in solution. Our model helps connect the predicted structures of GdFFD analogs to their activities, and highlights a steric effect on peptide activity at position 1 on the GdFFD receptor apALNR. Overall, these methods allow us to understand ligand-receptor interactions in the absence of high-resolution structural data.


Subject(s)
Aplysia/metabolism , Peptides/chemistry , Receptors, Neuropeptide/metabolism , Amino Acid Sequence , Animals , Mass Spectrometry , Molecular Dynamics Simulation , Neuropeptides/metabolism , Peptides/chemical synthesis , Peptides/metabolism , Protein Conformation , Quantum Theory , Receptors, Neuropeptide/chemistry , Structure-Activity Relationship , Thermodynamics
20.
J Am Chem Soc ; 140(30): 9685-9695, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29989407

ABSTRACT

Protein aggregation is typically attributed to the association of homologous amino acid sequences between monomers of the same protein. Coaggregation of heterogeneous peptide species can occur, however, and is implicated in the proliferation of seemingly unrelated protein diseases in the body. The prion protein fragment (PrP106-126) and human islet amyloid polypeptide (hIAPP) serve as an interesting model of nonhomologous protein assembly as they coaggregate, despite a lack of sequence homology. We have applied ion-mobility mass spectrometry, atomic force microscopy, circular dichroism, and high-level molecular modeling to elucidate this important assembly process. We found that the prion fragment not only forms pervasive hetero-oligomeric aggregates with hIAPP but also promotes the transition of hIAPP into its amyloidogenic ß-hairpin conformation. Further, when PrP106-126 was combined with non-amyloidogenic rIAPP, the two formed nearly identical hetero-oligomers to those seen with hIAPP, despite rIAPP containing ß-sheet breaking proline substitutions. Additionally, while rIAPP does not natively form the amyloidogenic ß-hairpin structure, it did so in the presence of PrP106-126 and underwent a conformational transition to ß-sheet in solution. We also find that PrP106-126 forms hetero-oligomers with the IAPP8-20 fragment but not with the "aggregation hot spot" IAPP20-29 fragment. PrP106-126 apparently induces IAPP into a ß-hairpin structure within the PrP:IAPP heterodimer complex and then, through ligand exchange, catalytically creates the amyloidogenic ß-hairpin dimer of IAPP in significantly greater abundance than IAPP does on its own. This is a new mechanistic model that provides a critical foundation for the detailed study of hetero-oligomerization and prion-like proliferation in amyloid systems.


Subject(s)
Amyloid/chemistry , Islet Amyloid Polypeptide/chemistry , Peptide Fragments/chemistry , Prions/chemistry , Amino Acid Sequence , Animals , Humans , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Multimerization , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...