Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230106, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38705194

ABSTRACT

Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Subject(s)
Citizen Science , Insecta , Animals , Citizen Science/methods , Community Participation/methods , Environmental Monitoring/methods
2.
Trends Ecol Evol ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38508923

ABSTRACT

Measuring and tracking biodiversity from local to global scales is challenging due to its multifaceted nature and the range of metrics used to describe spatial and temporal patterns. Abundance can be used to describe how a population changes across space and time, but it can be measured in different ways, with consequences for the interpretation and communication of spatiotemporal patterns. We differentiate between relative and absolute abundance, and discuss the advantages and disadvantages of each for biodiversity monitoring, conservation, and ecological research. We highlight when absolute abundance can be advantageous and should be prioritized in biodiversity monitoring and research, and conclude by providing avenues for future research directions to better assess the necessity of absolute abundance in biodiversity monitoring.

3.
J Anim Ecol ; 93(1): 4-7, 2024 01.
Article in English | MEDLINE | ID: mdl-37994548

ABSTRACT

Research Highlight: Saether, B. E., Engen, S., & Solbu, E. B. (2023a). Assessing the sensitivity and resistance of communities in a changing environment. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14003. In the face of global change, conservation strategies can be informed by understanding which biological communities are most at risk. Metrics that reflect the 'resilience' of communities to change could have great utility, but there is still no consensus on the most useful way to measure it. Saether et al. introduce an intuitive approach to thinking about and measuring resilience based on how variation in the total number of individuals within a community affects the number of species. By using dynamic species abundance distribution models, they also quantify the different sources of population-level variation that contribute to community resilience. Evenness emerges as an important predictor of resilience, with more even communities predicted to be more sensitive to abundance loss. An attractive feature of their approach is the ability to estimate the key parameters using commonly used generalized linear mixed effects models, which they illustrate with a case study on forest bird communities. The approach is ripe for comparison across different systems to explore how these proposed metrics complement existing biodiversity metrics and how they help understand the risk of communities from environmental change.


Subject(s)
Resilience, Psychological , Humans , Animals , Ecology , Biota , Biodiversity , Forests
4.
Nature ; 628(8007): 359-364, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38123681

ABSTRACT

Studies have reported widespread declines in terrestrial insect abundances in recent years1-4, but trends in other biodiversity metrics are less clear-cut5-7. Here we examined long-term trends in 923 terrestrial insect assemblages monitored in 106 studies, and found concomitant declines in abundance and species richness. For studies that were resolved to species level (551 sites in 57 studies), we observed a decline in the number of initially abundant species through time, but not in the number of very rare species. At the population level, we found that species that were most abundant at the start of the time series showed the strongest average declines (corrected for regression-to-the-mean effects). Rarer species were, on average, also declining, but these were offset by increases of other species. Our results suggest that the observed decreases in total insect abundance2 can mostly be explained by widespread declines of formerly abundant species. This counters the common narrative that biodiversity loss is mostly characterized by declines of rare species8,9. Although our results suggest that fundamental changes are occurring in insect assemblages, it is important to recognize that they represent only trends from those locations for which sufficient long-term data are available. Nevertheless, given the importance of abundant species in ecosystems10, their general declines are likely to have broad repercussions for food webs and ecosystem functioning.


Subject(s)
Biodiversity , Ecosystem , Insecta , Animals , Female , Male , Insecta/classification , Insecta/physiology , Species Specificity , Time Factors , Population Density , Population Dynamics
5.
Nature ; 620(7974): 582-588, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558875

ABSTRACT

Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.


Subject(s)
Biodiversity , Conservation of Water Resources , Environmental Monitoring , Fresh Water , Invertebrates , Animals , Introduced Species/trends , Invertebrates/classification , Invertebrates/physiology , Europe , Human Activities , Conservation of Water Resources/statistics & numerical data , Conservation of Water Resources/trends , Hydrobiology , Time Factors , Crop Production , Urbanization , Global Warming , Water Pollutants/analysis
6.
Biol Rev Camb Philos Soc ; 98(4): 983-1002, 2023 08.
Article in English | MEDLINE | ID: mdl-36859791

ABSTRACT

Ecologists routinely use statistical models to detect and explain interactions among ecological drivers, with a goal to evaluate whether an effect of interest changes in sign or magnitude in different contexts. Two fundamental properties of interactions are often overlooked during the process of hypothesising, visualising and interpreting interactions between drivers: the measurement scale - whether a response is analysed on an additive or multiplicative scale, such as a ratio or logarithmic scale; and the symmetry - whether dependencies are considered in both directions. Overlooking these properties can lead to one or more of three inferential errors: misinterpretation of (i) the detection and magnitude (Type-D error), and (ii) the sign of effect modification (Type-S error); and (iii) misidentification of the underlying processes (Type-A error). We illustrate each of these errors with a broad range of ecological questions applied to empirical and simulated data sets. We demonstrate how meta-analysis, a widely used approach that seeks explicitly to characterise context dependence, is especially prone to all three errors. Based on these insights, we propose guidelines to improve hypothesis generation, testing, visualisation and interpretation of interactions in ecology.


Subject(s)
Ecology , Models, Statistical , Meta-Analysis as Topic
7.
Sci Total Environ ; 857(Pt 3): 159607, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36273564

ABSTRACT

The majority of central European streams are in poor ecological condition. Pesticide inputs from terrestrial habitats present a key threat to sensitive insects in streams. Both standardized stream monitoring data and societal support are needed to conserve and restore freshwater habitats. Citizen science (CS) offers potential to complement international freshwater monitoring while it is often viewed critically due to concerns about data accuracy. Here, we developed a CS program based on the Water Framework Directive that enables citizen scientists to provide data on stream hydromorphology, physicochemical status and benthic macroinvertebrates to apply the trait-based bio-indicator SPEARpesticides for pesticide exposure. We compared CS monitoring data with professional data across 28 central German stream sites and could show that both CS and professional monitoring identified a similar average proportion of pesticide-sensitive macroinvertebrate taxa per stream site (20 %). CS data were highly correlated to the professional data for both stream hydromorphology and SPEARpesticides (r = 0.72 and 0.76). To assess the extent to which CS macroinvertebrate data can indicate pesticide exposure, we tested the relationship of CS generated SPEARpesticides values and measured pesticide concentrations at 21 stream sites, and found a fair correlation similar to professional results. We conclude that given appropriate training and support, citizen scientists can generate valid data on the ecological status and pesticide contamination of streams. By complementing official monitoring, data from well-managed CS programs can advance freshwater science and enhance the implementation of freshwater conservation goals.


Subject(s)
Citizen Science , Pesticides , Water Pollutants, Chemical , Animals , Rivers , Pesticides/analysis , Invertebrates , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Ecosystem
8.
J Anim Ecol ; 92(2): 403-416, 2023 02.
Article in English | MEDLINE | ID: mdl-36477754

ABSTRACT

Quantifying intraspecific and interspecific trait variability is critical to our understanding of biogeography, ecology and conservation. But quantifying such variability and understanding the importance of intraspecific and interspecific variability remain challenging. This is especially true of large geographic scales as this is where the differences between intraspecific and interspecific variability are likely to be greatest. Our goal is to address this research gap using broad-scale citizen science data to quantify intraspecific variability and compare it with interspecific variability, using the example of bird responses to urbanization across the continental United States. Using more than 100 million observations, we quantified urban tolerance for 338 species within randomly sampled spatial regions and then calculated the standard deviation of each species' urban tolerance. We found that species' spatial variability in urban tolerance (i.e. standard deviation) was largely explained by the variability of urban cover throughout a species' range (R2  = 0.70). Variability in urban tolerance was greater in species that were more tolerant of urban cover (i.e. the average urban tolerance throughout their range), suggesting that generalist life histories are better suited to adapt to novel anthropogenic environments. Overall, species differences explained most of the variability in urban tolerance across spatial regions. Together, our results indicate that (1) intraspecific variability is largely predicted by local environmental variability in urban cover at a large spatial scale and (2) interspecific variability is greater than intraspecific variability, supporting the common use of mean values (i.e. collapsing observations across a species' range) when assessing species-environment relationships. Further studies, across different taxa, traits and species-environment relationships are needed to test the role of intraspecific variability, but nevertheless, we recommend that when possible, ecologists should avoid using discrete categories to classify species in how they respond to the environment.


Subject(s)
Birds , Ecology , Animals , Phenotype , Ecosystem
9.
Sci Adv ; 8(45): eabm9982, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36351024

ABSTRACT

Effective policies to halt biodiversity loss require knowing which anthropogenic drivers are the most important direct causes. Whereas previous knowledge has been limited in scope and rigor, here we statistically synthesize empirical comparisons of recent driver impacts found through a wide-ranging review. We show that land/sea use change has been the dominant direct driver of recent biodiversity loss worldwide. Direct exploitation of natural resources ranks second and pollution third; climate change and invasive alien species have been significantly less important than the top two drivers. The oceans, where direct exploitation and climate change dominate, have a different driver hierarchy from land and fresh water. It also varies among types of biodiversity indicators. For example, climate change is a more important driver of community composition change than of changes in species populations. Stopping global biodiversity loss requires policies and actions to tackle all the major drivers and their interactions, not some of them in isolation.

10.
Trends Ecol Evol ; 37(10): 872-885, 2022 10.
Article in English | MEDLINE | ID: mdl-35811172

ABSTRACT

Insects are the most diverse group of animals on Earth, but their small size and high diversity have always made them challenging to study. Recent technological advances have the potential to revolutionise insect ecology and monitoring. We describe the state of the art of four technologies (computer vision, acoustic monitoring, radar, and molecular methods), and assess their advantages, current limitations, and future potential. We discuss how these technologies can adhere to modern standards of data curation and transparency, their implications for citizen science, and their potential for integration among different monitoring programmes and technologies. We argue that they provide unprecedented possibilities for insect ecology and monitoring, but it will be important to foster international standards via collaboration.


Subject(s)
Ecology , Insecta , Animals , Ecology/methods
11.
Sci Rep ; 12(1): 11069, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773384

ABSTRACT

Citizen scientists play an increasingly important role in biodiversity monitoring. Most of the data, however, are unstructured-collected by diverse methods that are not documented with the data. Insufficient understanding of the data collection processes presents a major barrier to the use of citizen science data in biodiversity research. We developed a questionnaire to ask citizen scientists about their decision-making before, during and after collecting and reporting species observations, using Germany as a case study. We quantified the greatest sources of variability among respondents and assessed whether motivations and experience related to any aspect of data collection. Our questionnaire was answered by almost 900 people, with varying taxonomic foci and expertise. Respondents were most often motivated by improving species knowledge and supporting conservation, but there were no linkages between motivations and data collection methods. By contrast, variables related to experience and knowledge, such as membership of a natural history society, were linked with a greater propensity to conduct planned searches, during which typically all species were reported. Our findings have implications for how citizen science data are analysed in statistical models; highlight the importance of natural history societies and provide pointers to where citizen science projects might be further developed.


Subject(s)
Biodiversity , Citizen Science , Humans , Knowledge , Motivation , Surveys and Questionnaires
12.
Glob Chang Biol ; 28(13): 3998-4012, 2022 07.
Article in English | MEDLINE | ID: mdl-35535680

ABSTRACT

Recent climate and land-use changes are having substantial impacts on biodiversity, including population declines, range shifts, and changes in community composition. However, few studies have compared these impacts among multiple taxa, particularly because of a lack of standardized time series data over long periods. Existing data sets are typically of low resolution or poor coverage, both spatially and temporally, thereby limiting the inferences that can be drawn from such studies. Here, we compare climate and land-use driven occupancy changes in butterflies, grasshoppers, and dragonflies using an extensive data set of highly heterogeneous observation data collected in the central European region of Bavaria (Germany) over a 40-year period. Using occupancy models, we find occupancies (the proportion of sites occupied by a species in each year) of 37% of species have decreased, 30% have increased and 33% showed no significant trend. Butterflies and grasshoppers show strongest declines with 41% of species each. By contrast, 52% of dragonfly species increased. Temperature preference and habitat specificity appear as significant drivers of species trends. We show that cold-adapted species across all taxa have declined, whereas warm-adapted species have increased. In butterflies, habitat specialists have decreased, while generalists increased or remained stable. The trends of habitat generalists and specialists both in grasshoppers and semi-aquatic dragonflies, however did not differ. Our findings indicate strong and consistent effects of climate warming across insect taxa. The decrease of butterfly specialists could hint towards a threat from land-use change, as especially butterfly specialists' occurrence depends mostly on habitat quality and area. Our study not only illustrates how these taxa showed differing trends in the past but also provides hints on how we might mitigate the detrimental effects of human development on their diversity in the future.


Subject(s)
Butterflies , Odonata , Animals , Biodiversity , Climate , Climate Change , Ecosystem , Europe
13.
Biol Lett ; 18(2): 20210554, 2022 02.
Article in English | MEDLINE | ID: mdl-35193369

ABSTRACT

Changes in the abundances of animals, such as with the ongoing concern about insect declines, are often assumed to be general across taxa. However, this assumption is largely untested. Here, we used a database of assemblage-wide long-term insect and arachnid monitoring to compare abundance trends among co-occurring pairs of taxa. We show that 60% of co-occurring taxa qualitatively showed long-term trends in the same direction-either both increasing or both decreasing. However, in terms of magnitude, temporal trends were only weakly correlated (mean freshwater r = 0.05 (±0.03), mean terrestrial r = 0.12 (±0.09)). The strongest correlation was between trends of beetles and those of moths/butterflies (r = 0.26). Overall, even though there is some support for directional similarity in temporal trends, we find that changes in the abundance of one taxon provide little information on the changes of other taxa. No clear candidate for umbrella or indicator taxa emerged from our analysis. We conclude that obtaining a better picture of changes in insect abundances will require monitoring of multiple taxa, which remains uncommon, especially in the terrestrial realm.


Subject(s)
Butterflies , Coleoptera , Moths , Animals , Biodiversity , Insecta
14.
Nat Ecol Evol ; 5(10): 1334-1335, 2021 10.
Article in English | MEDLINE | ID: mdl-34282316
15.
Glob Chang Biol ; 27(15): 3532-3546, 2021 08.
Article in English | MEDLINE | ID: mdl-34056817

ABSTRACT

Urban expansion poses a serious threat to biodiversity. Given that the expected area of urban land cover is predicted to increase by 2-3 million km2 by 2050, urban environments are one of the most widespread human-dominated land-uses affecting biodiversity. Responses to urbanization differ greatly among species. Some species are unable to tolerate urban environments (i.e., urban avoiders), others are able to adapt and use areas with moderate levels of urbanization (i.e., urban adapters), and yet others are able to colonize and even thrive in urban environments (i.e., urban exploiters). Quantifying species-specific responses to urbanization remains an important goal, but our current understanding of urban tolerance is heavily biased toward traditionally well-studied taxa (e.g., mammals and birds). We integrated a continuous measure of urbanization-night-time lights-with over 900,000 species' observations from the Global Biodiversity Information Facility to derive a comprehensive analysis of species-specific (N = 158 species) responses of butterflies to urbanization across Europe. The majority of butterfly species included in our analysis avoided urban areas, regardless of whether species' urban affinities were quantified as a mean score of urban affinity across all occurrences (79%) or as a species' response curve to the whole urbanization gradient (55%). We then used species-specific responses to urbanization to assess which life history strategies promote urban affinity in butterflies. These trait-based analyses found strong evidence that the average number of flight months, likely associated with thermal niche breath, and number of adult food types were positively associated with urban affinity, while hostplant specialism was negatively associated with urban affinity. Overall, our results demonstrate that specialist butterflies, both in terms of thermal and diet preferences, are most at risk from increasing urbanization, and should thus be considered in urban planning and prioritized for conservation.


Subject(s)
Butterflies , Animals , Biodiversity , Birds , Ecosystem , Europe , Humans , Urbanization
16.
Ecology ; 102(6): e03354, 2021 06.
Article in English | MEDLINE | ID: mdl-33797755

ABSTRACT

Insects are the most ubiquitous and diverse group of eukaryotic organisms on Earth, forming a crucial link in terrestrial and freshwater food webs. They have recently become the subject of headlines because of observations of dramatic declines in some places. Although there are hundreds of long-term insect monitoring programs, a global database for long-term data on insect assemblages has so far remained unavailable. In order to facilitate synthetic analyses of insect abundance changes, we compiled a database of long-term (≥10 yr) studies of assemblages of insects (many also including arachnids) in the terrestrial and freshwater realms. We searched the scientific literature and public repositories for data on insect and arachnid monitoring using standardized protocols over a time span of 10 yr or longer, with at least two sampling events. We focused on studies that presented or allowed calculation of total community abundance or biomass. We extracted data from tables, figures, and appendices, and, for data sets that provided raw data, we standardized trapping effort over space and time when necessary. For each site, we extracted provenance details (such as country, state, and continent) as well as information on protection status, land use, and climatic details from publicly available GIS sources. In all, the database contains 1,668 plot-level time series sourced from 165 studies with samples collected between 1925 and 2018. Sixteen data sets provided here were previously unpublished. Studies were separated into those collected in the terrestrial realm (103 studies with a total of 1,053 plots) and those collected in the freshwater realm (62 studies with 615 plots). Most studies were from Europe (48%) and North America (29%), with 34% of the plots located in protected areas. The median monitoring time span was 19 yr, with 12 sampling years. The number of individuals was reported in 129 studies, the total biomass was reported in 13 studies, and both abundance and biomass were reported in 23 studies. This data set is published under a CC-BY license, requiring attribution of the data source. Please cite this paper if the data are used in publications, and respect the licenses of the original sources when using (part of) their data as detailed in Metadata S1: Table 1.


Subject(s)
Arachnida , Animals , Europe , Food Chain , Humans , Insecta , North America
17.
J Anim Ecol ; 90(5): 1328-1340, 2021 05.
Article in English | MEDLINE | ID: mdl-33660289

ABSTRACT

Selection for crypsis has been recognized as an important ecological driver of animal colouration, whereas the relative importance of thermoregulation is more contentious with mixed empirical support. A potential thermal advantage of darker individuals has been observed in a wide range of animal species. Arctic animals that exhibit colour polymorphisms and undergo seasonal colour moults are interesting study subjects for testing the two alternative hypotheses: demographic performance of different colour morphs might be differentially affected by snow cover with a cryptic advantage for lighter morphs, or conversely by winter temperature with a thermal advantage for darker morphs. In this study, we explored whether camouflage and thermoregulation might explain differences in reproduction and survival between the white and blue colour morphs of the Arctic fox Vulpes lagopus under natural conditions. Juvenile and adult survival, breeding propensity and litter size were measured for 798 captive-bred and released or wild-born Arctic foxes monitored during an 11-year period (2007-2017) in two subpopulations in south-central Norway. We investigated the proportion of the two colour morphs and compared their demographic performance in relation to spatial variation in duration of snow cover, onset of snow season and winter temperatures. After population re-establishment, a higher proportion of blue individuals was observed among wild-born Arctic foxes compared to the proportion of blue foxes released from the captive population. Our field study provides the first evidence for an effect of colour morph on the reproductive performance of Arctic foxes under natural conditions, with a higher breeding propensity of the blue morph compared to the white one. Performance of the two colour morphs was not differentially affected by the climatic variables, except for juvenile survival. Blue morph juveniles showed a tendency for higher survival under colder winter temperatures but lower survival under warmer temperatures compared to white morph juveniles. Overall, our findings do not consistently support predictions of the camouflage or the thermoregulation hypotheses. The higher success of blue foxes suggests an advantage of the dark morph not directly related to disruptive selection by crypsis or thermoregulation. Our results rather point to physiological adaptations and behavioural traits not necessarily connected to thermoregulation, such as stress response, immune function, sexual behaviour and aggressiveness. Our findings highlight the need to explore the potential role of genetic linkage or pleiotropy in influencing the fitness of white and blue Arctic foxes as well as other species with colour polymorphisms.


Subject(s)
Pigmentation , Plant Breeding , Animals , Arctic Regions , Body Temperature Regulation , Foxes , Norway
18.
Proc Biol Sci ; 287(1941): 20202653, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33352076

ABSTRACT

According to classic theory, species' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the 'alternative prey hypothesis' (APH), the densities of ground-nesting birds and rodents are positively associated due to predator-prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007-2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.


Subject(s)
Birds , Climate , Rodentia , Animals , Arvicolinae , Bayes Theorem , Ecosystem , Food Chain , Norway , Population Dynamics , Predatory Behavior
19.
Glob Chang Biol ; 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33326165

ABSTRACT

Based on plant occurrence data covering all parts of Germany, we investigated changes in the distribution of 2136 plant species between 1960 and 2017. We analyzed 29 million occurrence records over an area of ~350,000 km2 on a 5 × 5 km grid using temporal and spatiotemporal models and accounting for sampling bias. Since the 1960s, more than 70% of investigated plant species showed declines in nationwide occurrence. Archaeophytes (species introduced before 1492) most strongly declined but also native plant species experienced severe declines. In contrast, neophytes (species introduced after 1492) increased in their nationwide occurrence but not homogeneously throughout the country. Our analysis suggests that the strongest declines in native species already happened in the 1960s-1980s, a time frame in which often few data exist. Increases in neophytic species were strongest in the 1990s and 2010s. Overall, the increase in neophytes did not compensate for the loss of other species, resulting in a decrease in mean grid cell species richness of -1.9% per decade. The decline in plant biodiversity is a widespread phenomenon occurring in different habitats and geographic regions. It is likely that this decline has major repercussions on ecosystem functioning and overall biodiversity, potentially with cascading effects across trophic levels. The approach used in this study is transferable to other large-scale trend analyses using heterogeneous occurrence data.

20.
Science ; 370(6523)2020 12 18.
Article in English | MEDLINE | ID: mdl-33335031

ABSTRACT

Desquilbet et al take issue with our data inclusion criteria and make several other dubious claims regarding data processing, analysis, and interpretation. Most of their concerns stem from disagreement on data inclusion criteria and analysis, misunderstanding of our goals, and unrealistic expectations. We maintain that our synthesis provides a state-of-the-art analysis of patterns of trends in insect abundances.


Subject(s)
Fresh Water , Insecta , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...