Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(19): 10445-10450, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37155687

ABSTRACT

mRNA display of macrocyclic peptides has proven itself to be a powerful technique to discover high-affinity ligands for a protein target. However, only a limited number of cyclization chemistries are known to be compatible with mRNA display. Tyrosinase is a copper-dependent oxidase that oxidizes tyrosine phenol to an electrophilic o-quinone, which is readily attacked by cysteine thiol. Here we show that peptides containing tyrosine and cysteine are rapidly cyclized upon tyrosinase treatment. Characterization of the cyclization reveals it to be widely applicable to multiple macrocycle sizes and scaffolds. We combine tyrosinase-mediated cyclization with mRNA display to discover new macrocyclic ligands targeting melanoma-associated antigen A4 (MAGE-A4). These macrocycles potently inhibit the MAGE-A4 binding axis with nanomolar IC50 values. Importantly, macrocyclic ligands show clear advantage over noncyclized analogues with ∼40-fold or greater decrease in IC50 values.


Subject(s)
Cysteine , Monophenol Monooxygenase , Monophenol Monooxygenase/metabolism , Cysteine/metabolism , RNA, Messenger/metabolism , Ligands , Peptides/chemistry , Tyrosine/metabolism , Catalysis , Cyclization
2.
ACS Chem Biol ; 18(1): 166-175, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36490372

ABSTRACT

mRNA display is a powerful, high-throughput technology for discovering novel, peptide ligands for protein targets. A number of methods have been used to expand the chemical diversity of mRNA display libraries beyond the 20 canonical amino acids, including genetic code reprogramming and biorthogonal chemistries. To date, however, there have been few reports using enzymes as biocompatible reagents for diversifying mRNA display libraries. Here, we report the evaluation and implementation of the common industrial enzyme, microbial transglutaminase (mTG), as a versatile biocatalyst for cyclization of mRNA display peptide libraries via lysine-to-glutamine isopeptide bonds. We establish two separate display-based assays to validate the compatibility of mTG with mRNA-linked peptide substrates. These assays indicate that mTG has a high degree of substrate tolerance and low single round bias. To demonstrate the potential benefits of mTG-mediated cyclization in ligand discovery, high diversity mTG-modified libraries were employed in two separate affinity selections: (1) one against the calcium and integrin binding protein, CIB1, and (2) the second against the immune checkpoint protein and emerging therapeutic target, B7-H3. Both selections resulted in the identification of potent, cyclic, low nanomolar binders, and subsequent structure-activity studies demonstrate the importance of the cyclization to the observed activity. Notably, cyclization in the CIB1 binder stabilizes an α-helical conformation, while the B7-H3 inhibitor employs two bridges, one mTG-derived lactam and a second disulfide to achieve its potency. Together, these results demonstrate potential benefits of enzyme-based biocatalysts in mRNA display ligand selections and establish a framework for employing mTG in mRNA display.


Subject(s)
Peptide Library , Proteins , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ligands , Proteins/metabolism , Protein Binding , Transglutaminases/genetics , Transglutaminases/chemistry , Transglutaminases/metabolism
3.
J Med Chem ; 65(3): 1996-2022, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35044775

ABSTRACT

A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide).


Subject(s)
Bacterial Proteins/metabolism , Guanidine/analogs & derivatives , Mycobacterium tuberculosis/enzymology , Transferases (Other Substituted Phosphate Groups)/metabolism , Urea/analogs & derivatives , Bacterial Proteins/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Guanidine/chemistry , Guanidine/metabolism , Guanidine/pharmacology , Kinetics , Microbial Sensitivity Tests , Molecular Conformation , Molecular Dynamics Simulation , Mycobacterium tuberculosis/drug effects , Structure-Activity Relationship , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Urea/chemistry , Urea/metabolism , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...