Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607954

ABSTRACT

BRCA1 germline mutations are associated with an increased risk of breast and ovarian cancer. Recent findings of others suggest that BRCA1 mutation carriers also bear an increased risk of esophageal and gastric cancer. Here, we employ a Brca1/Trp53 mouse model to show that unresolved replication stress (RS) in BRCA1 heterozygous cells drives esophageal tumorigenesis in a model of the human equivalent. This model employs 4-nitroquinoline-1-oxide (4NQO) as an RS-inducing agent. Upon drinking 4NQO-containing water, Brca1 heterozygous mice formed squamous cell carcinomas of the distal esophagus and forestomach at a much higher frequency and speed (∼90 to 120 d) than did wild-type (WT) mice, which remained largely tumor free. Their esophageal tissue, but not that of WT control mice, revealed evidence of overt RS as reflected by intracellular CHK1 phosphorylation and 53BP1 staining. These Brca1 mutant tumors also revealed higher genome mutation rates than those of control animals; the mutational signature SBS4, which is associated with tobacco-induced tumorigenesis; and a loss of Brca1 heterozygosity (LOH). This uniquely accelerated Brca1 tumor model is also relevant to human esophageal squamous cell carcinoma, an often lethal tumor.


Subject(s)
BRCA1 Protein/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Loss of Heterozygosity/genetics , Tumor Suppressor Protein p53/genetics , 4-Nitroquinoline-1-oxide/toxicity , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Checkpoint Kinase 1/metabolism , Disease Models, Animal , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/chemically induced , Esophageal Squamous Cell Carcinoma/pathology , Female , Germ-Line Mutation/genetics , Heterozygote , Humans , Loss of Heterozygosity/drug effects , Male , Mice , Mice, Knockout , Tumor Suppressor p53-Binding Protein 1/metabolism
2.
Nature ; 580(7803): 402-408, 2020 04.
Article in English | MEDLINE | ID: mdl-32296183

ABSTRACT

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships1,2. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.


Subject(s)
Proteome/metabolism , Extracellular Space/metabolism , Humans , Organ Specificity , Protein Interaction Mapping
3.
Sci Rep ; 9(1): 3952, 2019 03 08.
Article in English | MEDLINE | ID: mdl-30850678

ABSTRACT

Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.


Subject(s)
Cell Movement , DNA Helicases/physiology , DNA-Binding Proteins/physiology , Glioblastoma/pathology , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioblastoma/metabolism , Humans , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation
4.
Cancer Discov ; 9(4): 526-545, 2019 04.
Article in English | MEDLINE | ID: mdl-30709805

ABSTRACT

Although the majority of BRAF-mutant melanomas respond to BRAF/MEK inhibitors, these agents are not typically curative. Moreover, they are largely ineffective in NRAS- and NF1-mutant tumors. Here we report that genetic and chemical suppression of HDAC3 potently cooperates with MAPK pathway inhibitors in all three RAS pathway-driven tumors. Specifically, we show that entinostat dramatically enhances tumor regression when combined with BRAF/MEK inhibitors, in both models that are sensitive or relatively resistant to these agents. Interestingly, MGMT expression predicts responsiveness and marks tumors with latent defects in DNA repair. BRAF/MEK inhibitors enhance these defects by suppressing homologous recombination genes, inducing a BRCA-like state; however, addition of entinostat triggers the concomitant suppression of nonhomologous end-joining genes, resulting in a chemical synthetic lethality caused by excessive DNA damage. Together, these studies identify melanomas with latent DNA repair defects, describe a promising drug combination that capitalizes on these defects, and reveal a tractable therapeutic biomarker. SIGNIFICANCE: BRAF/MEK inhibitors are not typically curative in BRAF-mutant melanomas and are ineffective in NRAS- and NF1-mutant tumors. We show that HDAC inhibitors dramatically enhance the efficacy of BRAF/MEK inhibitors in sensitive and insensitive RAS pathway-driven melanomas by coordinately suppressing two DNA repair pathways, and identify a clinical biomarker that predicts responsiveness.See related commentary by Lombard et al., p. 469.This article is highlighted in the In This Issue feature, p. 453.


Subject(s)
DNA Repair/genetics , Genes, ras/genetics , MAP Kinase Kinase Kinases/genetics , Melanoma/genetics , Humans , Proto-Oncogene Proteins B-raf
5.
Sci Rep ; 9: 3952, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15862

ABSTRACT

Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.

6.
Sci Rep, v. 9, 3952, mar. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2685

ABSTRACT

Chromatin remodeler proteins exert an important function in promoting dynamic modifications in the chromatin architecture, performing a central role in regulating gene transcription. Deregulation of these molecular machines may lead to striking perturbations in normal cell function. The CHD7 gene is a member of the chromodomain helicase DNA-binding family and, when mutated, has been shown to be the cause of the CHARGE syndrome, a severe developmental human disorder. Moreover, CHD7 has been described to be essential for neural stem cells and it is also highly expressed or mutated in a number of human cancers. However, its potential role in glioblastoma has not yet been tested. Here, we show that CHD7 is up-regulated in human glioma tissues and we demonstrate that CHD7 knockout (KO) in LN-229 glioblastoma cells suppresses anchorage-independent growth and spheroid invasion in vitro. Additionally, CHD7 KO impairs tumor growth and increases overall survival in an orthotopic mouse xenograft model. Conversely, ectopic overexpression of CHD7 in LN-428 and A172 glioblastoma cell lines increases cell motility and invasiveness in vitro and promotes LN-428 tumor growth in vivo. Finally, RNA-seq analysis revealed that CHD7 modulates a specific transcriptional signature of invasion-related target genes. Further studies should explore clinical-translational implications for glioblastoma treatment.

8.
Mol Biotechnol ; 58(6): 404-14, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27126696

ABSTRACT

Recombinant human factor VIII (rFVIII) is used in replacement therapy for hemophilia A. Current research efforts are focused on bioengineering rFVIII molecules to improve its secretion efficiency and stability, limiting factors for its efficient production. However, high expression yield in mammalian cells of these rFVIII variants is generally associated with limited proteolytic processing. Non-processed single-chain polypeptides constitute non-natural FVIII molecule configurations with unpredictable toxicity and/or antigenicity. Our main objective was to demonstrate the feasibility of promoting full-proteolytic processing of an rFVIII variant retaining a portion of the B-domain, converting it into the smallest natural activatable form of rFVIII, while keeping its main advantage, i.e., improved secretion efficiency. We generated and employed a CHO-DG44 cell clone producing an rFVIII variant retaining a portion of the B-domain and the FVIII native cleavage site between Arg(1648) and Glu(1649). By bioengineering CHO-DG44 cells to express stably the recombinant human endoproteases PACE, PACE-SOL, PCSK5, PCSK6, or PCKS7, we were able to achieve complete intra- or extracellular proteolytic processing of this rFVIII variant. Additionally, our quantitative data indicated that removal of the B-domain segment by intracellular proteolytic processing does not interfere with this rFVIII variant secretion efficiency. This work also provides the first direct evidence of (1) intracellular cleavage at the Arg(1648) FVIII processing site promoted by wild-type PACE and PCSK7 and (2) proteolytic processing at the Arg(1648) FVIII processing site by PCSK6.


Subject(s)
Factor VIII/chemistry , Factor VIII/metabolism , Furin/metabolism , Animals , CHO Cells , Cricetulus , Factor VIII/genetics , Humans , Proprotein Convertases/metabolism , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Serine Endopeptidases/metabolism , Subtilisins/metabolism
9.
Oncotarget ; 6(32): 33120-33, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26431549

ABSTRACT

Glioblastoma multiforme is the most common and lethal of the central nervous system glial-derived tumors. RECK suppresses tumor invasion by negatively regulating at least three members of the matrix metalloproteinase family: MMP-9, MMP-2, and MT1-MMP. A positive correlation has been observed between the abundance of RECK expression in tumor samples and a more favorable prognosis for patients with several types of tumors. In the present study, novel alternatively spliced variants of the RECK gene: RECK-B and RECK-I were isolated by RT-PCR and sequenced. The expression levels and profiles of these alternative RECK transcripts, as well as canonical RECK were determined in tissue samples of malignant astrocytomas of different grades and in a normal tissue RNA panel by qRT-PCR. Our results show that higher canonical RECK expression, accompanied by a higher canonical to alternative transcript expression ratio, positively correlates with higher overall survival rate after chemotherapeutic treatment of GBM patients. U87MG and T98G cells over-expressing the RECK-B alternative variant display higher anchorage-independent clonal growth and do not display modulation of, respectively, MMP-2 and MMP-9 expression. Our findings suggest that RECK transcript variants might have opposite roles in GBM biology and the ratio of their expression levels may be informative for the prognostic outcome of GBM patients.


Subject(s)
Brain Neoplasms/genetics , GPI-Linked Proteins/genetics , Glioblastoma/genetics , Adult , Brain Neoplasms/metabolism , Cell Line, Tumor , Female , GPI-Linked Proteins/metabolism , Genes, Tumor Suppressor , Glioblastoma/metabolism , Humans , Male , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Middle Aged , Protein Isoforms , RNA Splicing
10.
Proc Natl Acad Sci U S A ; 112(1): 232-7, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25535366

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive form of epithelial ovarian cancer, for which few targeted therapies exist. To search for new therapeutic target proteins, we performed an in vivo shRNA screen using an established human HGSOC cell line growing either subcutaneously or intraperitoneally in immunocompromised mice. We identified genes previously implicated in ovarian cancer such as AURKA1, ERBB3, CDK2, and mTOR, as well as several novel candidates including BRD4, VRK1, and GALK2. We confirmed, using both genetic and pharmacologic approaches, that the activity of BRD4, an epigenetic transcription modulator, is necessary for proliferation/survival of both an established human ovarian cancer cell line (OVCAR8) and a subset of primary serous ovarian cancer cell strains (DFs). Among the DFs tested, the strains sensitive to BRD4 inhibition revealed elevated expression of either MYCN or c-MYC, with MYCN expression correlating closely with JQ1 sensitivity. Accordingly, primary human xenografts derived from high-MYCN or c-MYC strains exhibited sensitivity to BRD4 inhibition. These data suggest that BRD4 inhibition represents a new therapeutic approach for MYC-overexpressing HGSOCs.


Subject(s)
Genetic Testing , Molecular Targeted Therapy , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/therapy , Nuclear Proteins/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/therapy , Transcription Factors/metabolism , Animals , Carcinoma, Ovarian Epithelial , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Female , Genetic Association Studies , Humans , Mice , Proto-Oncogene Proteins c-myc/metabolism , RNA, Small Interfering/metabolism , Xenograft Model Antitumor Assays
11.
Nat Commun ; 5: 5496, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25400221

ABSTRACT

BRCA1-a breast and ovarian cancer suppressor gene-promotes genome integrity. To study the functionality of BRCA1 in the heterozygous state, we established a collection of primary human BRCA1(+/+) and BRCA1(mut/+) mammary epithelial cells and fibroblasts. Here we report that all BRCA1(mut/+) cells exhibited multiple normal BRCA1 functions, including the support of homologous recombination- type double-strand break repair (HR-DSBR), checkpoint functions, centrosome number control, spindle pole formation, Slug expression and satellite RNA suppression. In contrast, the same cells were defective in stalled replication fork repair and/or suppression of fork collapse, that is, replication stress. These defects were rescued by reconstituting BRCA1(mut/+) cells with wt BRCA1. In addition, we observed 'conditional' haploinsufficiency for HR-DSBR in BRCA1(mut/+) cells in the face of replication stress. Given the importance of replication stress in epithelial cancer development and of an HR defect in breast cancer pathogenesis, both defects are candidate contributors to tumorigenesis in BRCA1-deficient mammary tissue.


Subject(s)
DNA Replication/physiology , Genes, BRCA1/physiology , Haploinsufficiency/physiology , Animals , Breast/cytology , Cells, Cultured , Centrosome/physiology , DNA Replication/genetics , Female , Haploinsufficiency/genetics , Heterozygote , Humans , Mice , RNA, Satellite/genetics , RNA, Satellite/physiology , Rad51 Recombinase/genetics , Rad51 Recombinase/physiology , Recombinational DNA Repair/genetics , Recombinational DNA Repair/physiology , Spindle Poles/genetics , Spindle Poles/physiology
12.
J Biol Chem ; 289(35): 24617-29, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25016020

ABSTRACT

PALB2 links BRCA1 and BRCA2 in homologous recombinational repair of DNA double strand breaks (DSBs). Mono-allelic mutations in PALB2 increase the risk of breast, pancreatic, and other cancers, and biallelic mutations cause Fanconi anemia (FA). Like Brca1 and Brca2, systemic knock-out of Palb2 in mice results in embryonic lethality. In this study, we generated a hypomorphic Palb2 allele expressing a mutant PALB2 protein unable to bind BRCA1. Consistent with an FA-like phenotype, cells from the mutant mice showed hypersensitivity and chromosomal breakage when treated with mitomycin C, a DNA interstrand crosslinker. Moreover, mutant males showed reduced fertility due to impaired meiosis and increased apoptosis in germ cells. Interestingly, mutant meiocytes showed a significant defect in sex chromosome synapsis, which likely contributed to the germ cell loss and fertility defect. Our results underscore the in vivo importance of the PALB2-BRCA1 complex formation in DSB repair and male meiosis.


Subject(s)
BRCA1 Protein/metabolism , Infertility, Male/metabolism , Tumor Suppressor Proteins/metabolism , Amino Acid Sequence , Animals , BRCA1 Protein/chemistry , DNA Damage , DNA Repair , Fanconi Anemia Complementation Group N Protein , Homologous Recombination , Humans , In Situ Nick-End Labeling , Infertility, Male/genetics , Male , Mice , Molecular Sequence Data , Sequence Homology, Amino Acid , Tumor Suppressor Proteins/chemistry
13.
Mol Cell ; 54(6): 932-945, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24857551

ABSTRACT

Quiescence (G0) allows cycling cells to reversibly cease proliferation. A decision to enter quiescence is suspected of occurring early in G1, before the restriction point (R). Surprisingly, we have identified G2 as an interval during which inhibition of the protein phosphatase PP2A results in failure to exhibit stable quiescence. This effect is accompanied by shortening of the ensuing G1. The PP2A subcomplex required for stable G0 contains the B56γ B subunit. After PP2A inhibition in G2, aberrant overexpression of cyclin E occurs during mitosis and is responsible for overriding quiescence. Strikingly, suppression of Ras signaling re-establishes normal cyclin E levels during M and restores G0. These data point to PP2A-B56γ-driven Ras signaling modulation in G2 as essential for suppressing aberrant cyclin E expression during mitosis and thereby achieving normal G0 control. Thus, G2 is an interval during which the length and growth factor dependence of the next G1 interval are established.


Subject(s)
G1 Phase/genetics , G2 Phase/genetics , Oncogene Protein p21(ras)/genetics , Protein Phosphatase 2/genetics , Resting Phase, Cell Cycle/physiology , Cell Line , Cyclin E/biosynthesis , Humans , MCF-7 Cells , Mitosis/genetics , Protein Subunits/genetics , RNA Interference , RNA, Small Interfering , Signal Transduction/genetics
14.
Proc Natl Acad Sci U S A ; 110(21): 8632-7, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23657012

ABSTRACT

Germ-line mutations in PALB2 lead to a familial predisposition to breast and pancreatic cancer or to Fanconi Anemia subtype N. PALB2 performs its tumor suppressor role, at least in part, by supporting homologous recombination-type double strand break repair (HR-DSBR) through physical interactions with BRCA1, BRCA2, and RAD51. To further understand the mechanisms underlying PALB2-mediated DNA repair and tumor suppression functions, we targeted Palb2 in the mouse. Palb2-deficient murine ES cells recapitulated DNA damage defects caused by PALB2 depletion in human cells, and germ-line deletion of Palb2 led to early embryonic lethality. Somatic deletion of Palb2 driven by K14-Cre led to mammary tumor formation with long latency. Codeletion of both Palb2 and Tumor protein 53 (Trp53) accelerated mammary tumor formation. Like BRCA1 and BRCA2 mutant breast cancers, these tumors were defective in RAD51 focus formation, reflecting a defect in Palb2 HR-DSBR function, a strongly suspected contributor to Brca1, Brca2, and Palb2 mammary tumor development. However, unlike the case of Brca1-mutant cells, Trp53bp1 deletion failed to rescue the genomic instability of Palb2- or Brca2-mutant primary lymphocytes. Therefore, Palb2-driven DNA damage control is, in part, distinct from that executed by Brca1 and more similar to that of Brca2. The mechanisms underlying Palb2 mammary tumor suppression functions can now be explored genetically in vivo.


Subject(s)
Breast Neoplasms/metabolism , Mammary Neoplasms, Experimental/metabolism , Neoplastic Syndromes, Hereditary/metabolism , Nuclear Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Animals , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Models, Animal , Fanconi Anemia Complementation Group N Protein , Female , Gene Deletion , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Mutant Strains , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology , Nuclear Proteins/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics
15.
Cancer Discov ; 3(8): 894-907, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23650262

ABSTRACT

Hereditary breast cancers stem from germline mutations in susceptibility genes such as BRCA1, BRCA2, and PALB2, whose products function in the DNA damage response and redox regulation. Autophagy is an intracellular waste disposal and stress mitigation mechanism important for alleviating oxidative stress and DNA damage response activation; it can either suppress or promote cancer, but its role in breast cancer is unknown. Here, we show that similar to Brca1 and Brca2, ablation of Palb2 in the mouse mammary gland resulted in tumor development with long latency, and the tumors harbored mutations in Trp53. Interestingly, impaired autophagy, due to monoallelic loss of the essential autophagy gene Becn1, reduced Palb2-associated mammary tumorigenesis in a Trp53-wild-type but not conditionally null background. These results indicate that, in the face of DNA damage and oxidative stress elicited by PALB2 loss, p53 is a barrier to cancer development, whereas autophagy facilitates cell survival and tumorigenesis.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Autophagy , Carcinogenesis , Mammary Neoplasms, Experimental/pathology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics , Animals , Apoptosis , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Beclin-1 , Cellular Senescence , DNA Damage , Disease Models, Animal , Fanconi Anemia Complementation Group N Protein , Female , Heterozygote , Humans , Mammary Neoplasms, Experimental/genetics , Mice , Mice, Knockout , Oxidative Stress/genetics , Oxidative Stress/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/metabolism
16.
Cancer Discov ; 2(4): 366-375, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22576213

ABSTRACT

UNLABELLED: DNA repair competency is one determinant of sensitivity to certain chemotherapy drugs, such as cisplatin. Cancer cells with intact DNA repair can avoid the accumulation of genome damage during growth and also can repair platinum-induced DNA damage. We sought genomic signatures indicative of defective DNA repair in cell lines and tumors and correlated these signatures to platinum sensitivity. The number of subchromosomal regions with allelic imbalance extending to the telomere (N(tAI)) predicted cisplatin sensitivity in vitro and pathologic response to preoperative cisplatin treatment in patients with triple-negative breast cancer (TNBC). In serous ovarian cancer treated with platinum-based chemotherapy, higher levels of N(tAI) forecast a better initial response. We found an inverse relationship between BRCA1 expression and N(tAI) in sporadic TNBC and serous ovarian cancers without BRCA1 or BRCA2 mutation. Thus, accumulation of telomeric allelic imbalance is a marker of platinum sensitivity and suggests impaired DNA repair. SIGNIFICANCE: Mutations in BRCA genes cause defects in DNA repair that predict sensitivity to DNA damaging agents, including platinum; however, some patients without BRCA mutations also benefit from these agents. NtAI, a genomic measure of unfaithfully repaired DNA, may identify cancer patients likely to benefit from treatments targeting defective DNA repair.


Subject(s)
Allelic Imbalance , DNA Damage/drug effects , DNA Repair/drug effects , Telomere/genetics , Antineoplastic Agents , Cell Line, Tumor , Chromosome Aberrations , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Genes, BRCA1 , Humans , Models, Biological , Mutation , Ovarian Neoplasms/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...