Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Elife ; 122023 06 07.
Article in English | MEDLINE | ID: mdl-37283438

ABSTRACT

Intermediate filaments (IFs) are major components of the metazoan cytoskeleton. A long-standing debate concerns the question whether IF network organization only reflects or also determines cell and tissue function. Using Caenorhabditis elegans, we have recently described mutants of the mitogen-activated protein kinase (MAPK) SMA-5 which perturb the organization of the intestinal IF cytoskeleton resulting in luminal widening and cytoplasmic invaginations. Besides these structural phenotypes, systemic dysfunctions were also observed. We now identify the IF polypeptide IFB-2 as a highly efficient suppressor of both the structural and functional deficiencies of mutant sma-5 animals by removing the aberrant IF network. Mechanistically, perturbed IF network morphogenesis is linked to hyperphosphorylation of multiple sites throughout the entire IFB-2 molecule. The rescuing capability is IF isotype-specific and not restricted to sma-5 mutants but extends to mutants that disrupt the function of the cytoskeletal linker IFO-1 and the IF-associated protein BBLN-1. The findings provide strong evidence for adverse consequences of the deranged IF networks with implications for diseases that are characterized by altered IF network organization.


Subject(s)
Caenorhabditis elegans Proteins , Intermediate Filaments , Animals , Intermediate Filaments/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Intestines , Cytoskeleton/metabolism
2.
G3 (Bethesda) ; 12(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-36029236

ABSTRACT

Auxin-inducible degradation is a powerful tool for the targeted degradation of proteins with spatiotemporal control. One limitation of the auxin-inducible degradation system is that not all proteins are degraded efficiently. Here, we demonstrate that an alternative degron sequence, termed mIAA7, improves the efficiency of degradation in Caenorhabditiselegans, as previously reported in human cells. We tested the depletion of a series of proteins with various subcellular localizations in different tissue types and found that the use of the mIAA7 degron resulted in faster depletion kinetics for 5 out of 6 proteins tested. The exception was the nuclear protein HIS-72, which was depleted with similar efficiency as with the conventional AID* degron sequence. The mIAA7 degron also increased the leaky degradation for 2 of the tested proteins. To overcome this problem, we combined the mIAA7 degron with the C. elegans AID2 system, which resulted in complete protein depletion without detectable leaky degradation. Finally, we show that the degradation of ERM-1, a highly stable protein that is challenging to deplete, could be improved further by using multiple mIAA7 degrons. Taken together, the mIAA7 degron further increases the power and applicability of the auxin-inducible degradation system. To facilitate the generation of mIAA7-tagged proteins using CRISPR/Cas9 genome engineering, we generated a toolkit of plasmids for the generation of dsDNA repair templates by PCR.


Subject(s)
Caenorhabditis elegans , Indoleacetic Acids , Animals , Caenorhabditis elegans/metabolism , Humans , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proteolysis
3.
J Biol Chem ; 298(4): 101786, 2022 04.
Article in English | MEDLINE | ID: mdl-35247383

ABSTRACT

Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Polarity/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelium/metabolism
4.
Front Cell Dev Biol ; 10: 769862, 2022.
Article in English | MEDLINE | ID: mdl-35198555

ABSTRACT

Reorganization of the plasma membrane and underlying actin cytoskeleton into specialized domains is essential for the functioning of most polarized cells in animals. Proteins of the ezrin-radixin-moesin (ERM) and Na+/H+ exchanger 3 regulating factor (NHERF) family are conserved regulators of cortical specialization. ERM proteins function as membrane-actin linkers and as molecular scaffolds that organize the distribution of proteins at the membrane. NHERF proteins are PDZ-domain containing adapters that can bind to ERM proteins and extend their scaffolding capability. Here, we investigate how ERM and NHERF proteins function in regulating intestinal lumen formation in the nematode Caenorhabditis elegans. C. elegans has single ERM and NHERF family proteins, termed ERM-1 and NRFL-1, and ERM-1 was previously shown to be critical for intestinal lumen formation. Using CRISPR/Cas9-generated nrfl-1 alleles we demonstrate that NRFL-1 localizes at the intestinal microvilli, and that this localization is depended on an interaction with ERM-1. However, nrfl-1 loss of function mutants are viable and do not show defects in intestinal development. Interestingly, combining nrfl-1 loss with erm-1 mutants that either block or mimic phosphorylation of a regulatory C-terminal threonine causes severe defects in intestinal lumen formation. These defects are not observed in the phosphorylation mutants alone, and resemble the effects of strong erm-1 loss of function. The loss of NRFL-1 did not affect the localization or activity of ERM-1. Together, these data indicate that ERM-1 and NRFL-1 function together in intestinal lumen formation in C. elegans. We postulate that the functioning of ERM-1 in this tissue involves actin-binding activities that are regulated by the C-terminal threonine residue and the organization of apical domain composition through NRFL-1.

5.
Genetics ; 219(4)2021 12 10.
Article in English | MEDLINE | ID: mdl-34849800

ABSTRACT

Interactions among proteins are fundamental for life and determining whether two particular proteins physically interact can be essential for fully understanding a protein's function. We present Caenorhabditis elegans light-induced coclustering (CeLINC), an optical binary protein-protein interaction assay to determine whether two proteins interact in vivo. Based on CRY2/CIB1 light-dependent oligomerization, CeLINC can rapidly and unambiguously identify protein-protein interactions between pairs of fluorescently tagged proteins. A fluorescently tagged bait protein is captured using a nanobody directed against the fluorescent protein (GFP or mCherry) and brought into artificial clusters within the cell. Colocalization of a fluorescently tagged prey protein in the cluster indicates a protein interaction. We tested the system with an array of positive and negative reference protein pairs. Assay performance was extremely robust with no false positives detected in the negative reference pairs. We then used the system to test for interactions among apical and basolateral polarity regulators. We confirmed interactions seen between PAR-6, PKC-3, and PAR-3, but observed no physical interactions among the basolateral Scribble module proteins LET-413, DLG-1, and LGL-1. We have generated a plasmid toolkit that allows use of custom promoters or CRY2 variants to promote flexibility of the system. The CeLINC assay is a powerful and rapid technique that can be widely applied in C. elegans due to the universal plasmids that can be used with existing fluorescently tagged strains without need for additional cloning or genetic modification of the genome.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Fluorescent Antibody Technique/methods , Protein Interaction Maps , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cryptochromes/metabolism , Light , Protein Binding/radiation effects
6.
PLoS Genet ; 17(10): e1009856, 2021 10.
Article in English | MEDLINE | ID: mdl-34673778

ABSTRACT

The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. In C. elegans, the Scrib ortholog LET-413 is essential for apical-basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-1 discs large, which we demonstrate is also essential for directed outgrowth of the seam cells. Our data uncover multiple essential functions for LET-413 in larval development and show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scribble and DLG-1 Discs large.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Epidermal Cells/metabolism , Epidermis/metabolism , Epithelial Cells/metabolism , Animals , Cell Polarity/physiology , Epithelium/metabolism , Intercellular Junctions/metabolism
7.
Curr Biol ; 31(11): 2334-2346.e9, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33857431

ABSTRACT

Epithelial tubes are essential components of metazoan organ systems that control the flow of fluids and the exchange of materials between body compartments and the outside environment. The size and shape of the central lumen confer important characteristics to tubular organs and need to be carefully controlled. Here, we identify the small coiled-coil protein BBLN-1 as a regulator of lumen morphology in the C. elegans intestine. Loss of BBLN-1 causes the formation of bubble-shaped invaginations of the apical membrane into the cytoplasm of intestinal cells and abnormal aggregation of the subapical intermediate filament (IF) network. BBLN-1 interacts with IF proteins and localizes to the IF network in an IF-dependent manner. The appearance of invaginations is a result of the abnormal IF aggregation, indicating a direct role for the IF network in maintaining lumen homeostasis. Finally, we identify bublin (BBLN) as the mammalian ortholog of BBLN-1. When expressed in the C. elegans intestine, BBLN recapitulates the localization pattern of BBLN-1 and can compensate for the loss of BBLN-1 in early larvae. In mouse intestinal organoids, BBLN localizes subapically, together with the IF protein keratin 8. Our results therefore may have implications for understanding the role of IFs in regulating epithelial tube morphology in mammals.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Intermediate Filament Proteins , Intermediate Filaments , Intestines , Mice
8.
Elife ; 92020 12 10.
Article in English | MEDLINE | ID: mdl-33300872

ABSTRACT

The cortical polarity regulators PAR-6, PKC-3, and PAR-3 are essential for the polarization of a broad variety of cell types in multicellular animals. In C. elegans, the roles of the PAR proteins in embryonic development have been extensively studied, yet little is known about their functions during larval development. Using inducible protein degradation, we show that PAR-6 and PKC-3, but not PAR-3, are essential for postembryonic development. PAR-6 and PKC-3 are required in the epidermal epithelium for animal growth, molting, and the proper pattern of seam-cell divisions. Finally, we uncovered a novel role for PAR-6 in organizing non-centrosomal microtubule arrays in the epidermis. PAR-6 was required for the localization of the microtubule organizer NOCA-1/Ninein, and defects in a noca-1 mutant are highly similar to those caused by epidermal PAR-6 depletion. As NOCA-1 physically interacts with PAR-6, we propose that PAR-6 promotes non-centrosomal microtubule organization through localization of NOCA-1/Ninein.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/growth & development , Epidermis/metabolism , Microtubules/metabolism , Protein Kinase C/physiology , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Division , Larva , Protein Kinase C/metabolism
9.
Development ; 147(14)2020 07 22.
Article in English | MEDLINE | ID: mdl-32586975

ABSTRACT

ERM proteins are conserved regulators of cortical membrane specialization that function as membrane-actin linkers and molecular hubs. The activity of ERM proteins requires a conformational switch from an inactive cytoplasmic form into an active membrane- and actin-bound form, which is thought to be mediated by sequential PIP2 binding and phosphorylation of a conserved C-terminal threonine residue. Here, we use the single Caenorhabditiselegans ERM ortholog, ERM-1, to study the contribution of these regulatory events to ERM activity and tissue formation in vivo Using CRISPR/Cas9-generated erm-1 mutant alleles, we demonstrate that a PIP2-binding site is crucially required for ERM-1 function. By contrast, dynamic regulation of C-terminal T544 phosphorylation is not essential but modulates ERM-1 apical localization and dynamics in a tissue-specific manner, to control cortical actin organization and support lumen formation in epithelial tubes. Our work highlights the dynamic nature of ERM protein regulation during tissue morphogenesis and the importance of C-terminal phosphorylation in fine-tuning ERM activity in a tissue-specific context.


Subject(s)
Actins/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cytoskeletal Proteins/metabolism , Actin Cytoskeleton , Amino Acid Sequence , Animals , Binding Sites , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Humans , Intestinal Mucosa/metabolism , Larva/growth & development , Larva/metabolism , Mutagenesis, Site-Directed , Phosphorylation , Protein Binding , Protein Domains , Sequence Alignment
10.
Nat Commun ; 11(1): 2440, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415080

ABSTRACT

Here, to overcome many limitations accompanying current available methods to detect protein-protein interactions (PPIs), we develop a live cell method called Split Intein-Mediated Protein Ligation (SIMPL). In this approach, bait and prey proteins are respectively fused to an intein N-terminal fragment (IN) and C-terminal fragment (IC) derived from a re-engineered split intein GP41-1. The bait/prey binding reconstitutes the intein, which splices the bait and prey peptides into a single intact protein that can be detected by regular protein detection methods such as Western blot analysis and ELISA, serving as readouts of PPIs. The method is robust and can be applied not only in mammalian cell lines but in animal models such as C. elegans. SIMPL demonstrates high sensitivity and specificity, and enables exploration of PPIs in different cellular compartments and tracking of kinetic interactions. Additionally, we establish a SIMPL ELISA platform that enables high-throughput screening of PPIs and their inhibitors.


Subject(s)
Inteins/genetics , Protein Interaction Mapping , Amino Acid Sequence , Animals , Caenorhabditis elegans/metabolism , Drug Evaluation, Preclinical , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , HeLa Cells , Humans , Protein Binding , Time Factors
11.
PLoS One ; 15(5): e0226540, 2020.
Article in English | MEDLINE | ID: mdl-32396563

ABSTRACT

Plant pathogenic bacteria, fungi and oomycetes secrete effector proteins to manipulate host cell processes to establish a successful infection. Over the last decade the genomes and transcriptomes of many agriculturally important plant pathogens have been sequenced and vast candidate effector repertoires were identified using bioinformatic analyses. Elucidating the contribution of individual effectors to pathogenicity is the next major hurdle. To advance our understanding of the molecular mechanisms underlying lettuce susceptibility to the downy mildew Bremia lactucae, we mapped physical interactions between B. lactucae effectors and lettuce candidate target proteins. Using a lettuce cDNA library-based yeast-two-hybrid system, 61 protein-protein interactions were identified, involving 21 B. lactucae effectors and 46 unique lettuce proteins. The top ten interactors based on the number of independent colonies identified in the Y2H and two interactors that belong to gene families involved in plant immunity, were further characterized. We determined the subcellular localization of the fluorescently tagged lettuce proteins and their interacting effectors. Importantly, relocalization of effectors or their interactors to the nucleus was observed for four protein-pairs upon their co-expression, supporting their interaction in planta.


Subject(s)
Disease Resistance/genetics , Fungal Proteins/metabolism , Host-Pathogen Interactions/physiology , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Proteins/metabolism , Lactuca/microbiology
12.
Curr Opin Cell Biol ; 62: 1-8, 2020 02.
Article in English | MEDLINE | ID: mdl-31505411

ABSTRACT

The establishment of an apical-basal axis of polarity is essential for the organization and functioning of epithelial cells. Polarization of epithelial cells is orchestrated by a network of conserved polarity regulators that establish opposing cortical domains through mutually antagonistic interactions and positive feedback loops. While our understanding is still far from complete, the molecular details behind these interactions continue to be worked out. Here, we highlight recent findings on the mechanisms that control the activity and localization of apical-basal polarity regulators, including oligomerization and higher-order complex formation, auto-inhibitory interactions, and electrostatic interactions with the plasma membrane.


Subject(s)
Cell Polarity/physiology , Epithelial Cells/metabolism , Animals
13.
Front Cell Neurosci ; 13: 348, 2019.
Article in English | MEDLINE | ID: mdl-31417366

ABSTRACT

The basic leucine-zipper (bZIP) domain transcription factors CCAAT/enhancer-binding proteins (C/EBP) have a variety of roles in cell proliferation, differentiation, and stress response. In the nervous system, several isoforms of C/EBP function in learning and memory, neuronal plasticity, neuroinflammation, and axon regeneration. We previously reported that the Caenorhabditis elegans C/EBP homolog, CEBP-1, is essential for axon regeneration. CEBP-1 consists of 319 amino acids, with its bZIP domain at the C-terminus and a long N-terminal fragment with no known protein motifs. Here, using forward genetic screening with targeted genome editing, we have identified a unique domain in the N-terminus that is critical for its in vivo function. Additionally, we characterized three nuclear localization signals (NLS) in CEBP-1 that act together to mediate CEBP-1's nuclear import. Moreover, the Importin-α, IMA-3, can bind to CEBP-1 via one of the NLS. ima-3 is ubiquitously expressed in all somatic cells, and ima-3 null mutants are larval lethal. Using Cre-lox dependent neuron-specific deletion strategy, we show that ima-3 is not critical for axon development, but is required for axon regeneration in adults. Together, these data advance our understanding of CEBP-1's function, and suggest new regulators that remain to be identified to expand the CEBP-1 protein interactome.

14.
Curr Biol ; 29(13): R637-R639, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31287983

ABSTRACT

Polarity establishment is a key developmental process, but what determines its timing is poorly understood. New research in Caenorhabditis elegans demonstrates that the PAR polarity system extensively reconfigures before becoming competent to polarize. By inhibiting membrane localization of anterior PAR proteins, AIR-1 (aurora A) and PLK-1 (polo kinase) prevent premature polarization.


Subject(s)
Caenorhabditis elegans Proteins , Cell Polarity , Animals , Aurora Kinase A , Caenorhabditis elegans , Cues , Protein Serine-Threonine Kinases
15.
Curr Opin Syst Biol ; 13: 1-9, 2019 Feb.
Article in English | MEDLINE | ID: mdl-32984658

ABSTRACT

The systematic identification of all protein-protein interactions that take place in an organism (the 'interactome') is an important goal in modern biology. The nematode Caenorhabditis elegans was one of the first multicellular models for which a proteome-wide interactome mapping project was initiated. Most Caenorhabditis elegans interactome mapping efforts have utilized the yeast two-hybrid system, yielding an extensive binary interactome, while recent developments in mass spectrometry-based approaches hold great potential for further improving our understanding of protein interactome networks in a multicellular context. For example, methods like co-fractionation, proximity labeling, and tissue-specific protein purification not only identify protein-protein interactions, but have the potential to provide crucial insight into when and where interactions take place. Here we review current standards and recent improvements in protein interaction mapping in C. elegans.

16.
Dis Model Mech ; 11(6)2018 06 21.
Article in English | MEDLINE | ID: mdl-29752286

ABSTRACT

Cisplatin and derivatives are commonly used as chemotherapeutic agents. Although the cytotoxic action of cisplatin on cancer cells is very efficient, clinical oncologists need to deal with two major difficulties, namely the onset of resistance to the drug and the cytotoxic effect in patients. Here, we used Caenorhabditis elegans to investigate factors influencing the response to cisplatin in multicellular organisms. In this hermaphroditic model organism, we observed that sperm failure is a major cause of cisplatin-induced infertility. RNA sequencing data indicate that cisplatin triggers a systemic stress response, in which DAF-16/FOXO and SKN-1/NRF2, two conserved transcription factors, are key regulators. We determined that inhibition of the DNA damage-induced apoptotic pathway does not confer cisplatin protection to the animal. However, mutants for the pro-apoptotic BH3-only gene ced-13 are sensitive to cisplatin, suggesting a protective role of the intrinsic apoptotic pathway. Finally, we demonstrated that our system can also be used to identify mutations providing resistance to cisplatin and therefore potential biomarkers of innate cisplatin-refractory patients. We show that mutants for the redox regulator trxr-1, ortholog of the mammalian thioredoxin reductase 1 TRXR1, display cisplatin resistance. By CRISPR/Cas9, we determined that such resistance relies on the presence of the single selenocysteine residue in TRXR-1.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Antineoplastic Agents/pharmacology , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Cisplatin/pharmacology , Animals , Apoptosis/drug effects , Biological Assay , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/metabolism , Male , Mutation, Missense/genetics , Sequence Analysis, RNA , Spermatozoa/drug effects , Spermatozoa/metabolism , Transcription, Genetic/drug effects
17.
J Mol Biol ; 430(19): 3521-3544, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29289568

ABSTRACT

Interactions between proteins are an essential part of biology, and the desire to identify these interactions has led to the development of numerous technologies to systematically map protein-protein interactions at a large scale. As in most cellular processes, protein interactions are central to the control of cell polarity, and a full understanding of polarity will require comprehensive knowledge of the protein interactions involved. At its core, cell polarity is established through carefully regulated mutually inhibitory interactions between several groups of cortical proteins. While several interactions have been identified, the dynamics and molecular mechanisms that control these interactions are not well understood. Cell polarity also needs to be integrated with cellular processes including junction formation, cytoskeletal organization, organelle positioning, protein trafficking, and functional specialization of membrane domains. Moreover, polarized cells need to respond to external cues that coordinate polarity at the tissue level. Identifying the protein-protein interactions responsible for integrating polarity with all of these processes remains a major challenge, in part because the mechanisms of polarity control vary in different contexts and with developmental times. Because of their unbiased nature, systematic large-scale protein-protein interaction mapping approaches can be particularly helpful to identify such mechanisms. Here, we discuss methods commonly used to generate proteome-wide interactome maps, with an emphasis on advances in our understanding of cell polarity that have been achieved through application of such methods.


Subject(s)
Cell Polarity/physiology , Protein Interaction Mapping , Proteome , Proteomics , Animals , Humans , Protein Interaction Mapping/methods , Protein Interaction Maps , Proteomics/methods
18.
PLoS Genet ; 13(2): e1006632, 2017 02.
Article in English | MEDLINE | ID: mdl-28207814

ABSTRACT

The eukaryotic genome is organized in a three-dimensional structure called chromatin, constituted by DNA and associated proteins, the majority of which are histones. Post-translational modifications of histone proteins greatly influence chromatin structure and regulate many DNA-based biological processes. Methylation of lysine 36 of histone 3 (H3K36) is a post-translational modification functionally relevant during early steps of DNA damage repair. Here, we show that the JMJD-5 regulates H3K36 di-methylation and it is required at late stages of double strand break repair mediated by homologous recombination. Loss of jmjd-5 results in hypersensitivity to ionizing radiation and in meiotic defects, and it is associated with aberrant retention of RAD-51 at sites of double strand breaks. Analyses of jmjd-5 genetic interactions with genes required for resolving recombination intermediates (rtel-1) or promoting the resolution of RAD-51 double stranded DNA filaments (rfs-1 and helq-1) suggest that jmjd-5 prevents the formation of stalled postsynaptic recombination intermediates and favors RAD-51 removal. As these phenotypes are all recapitulated by a catalytically inactive jmjd-5 mutant, we propose a novel role for H3K36me2 regulation during late steps of homologous recombination critical to preserve genome integrity.


Subject(s)
Caenorhabditis elegans Proteins/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Homologous Recombination/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Rad51 Recombinase/genetics , Animals , Apoptosis/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Chromatin/genetics , DNA Damage/genetics , DNA Helicases/metabolism , DNA Methylation/genetics , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Genomic Instability , Germ Cells , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Protein Processing, Post-Translational/genetics , Rad51 Recombinase/metabolism
19.
PLoS Genet ; 12(10): e1006291, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27711157

ABSTRACT

During cell division, the mitotic spindle segregates replicated chromosomes to opposite poles of the cell, while the position of the spindle determines the plane of cleavage. Spindle positioning and chromosome segregation depend on pulling forces on microtubules extending from the centrosomes to the cell cortex. Critical in pulling force generation is the cortical anchoring of cytoplasmic dynein by a conserved ternary complex of Gα, GPR-1/2, and LIN-5 proteins in C. elegans (Gα-LGN-NuMA in mammals). Previously, we showed that the polarity kinase PKC-3 phosphorylates LIN-5 to control spindle positioning in early C. elegans embryos. Here, we investigate whether additional LIN-5 phosphorylations regulate cortical pulling forces, making use of targeted alteration of in vivo phosphorylated residues by CRISPR/Cas9-mediated genetic engineering. Four distinct in vivo phosphorylated LIN-5 residues were found to have critical functions in spindle positioning. Two of these residues form part of a 30 amino acid binding site for GPR-1, which we identified by reverse two-hybrid screening. We provide evidence for a dual-kinase mechanism, involving GSK3 phosphorylation of S659 followed by phosphorylation of S662 by casein kinase 1. These LIN-5 phosphorylations promote LIN-5-GPR-1/2 interaction and contribute to cortical pulling forces. The other two critical residues, T168 and T181, form part of a cyclin-dependent kinase consensus site and are phosphorylated by CDK1-cyclin B in vitro. We applied a novel strategy to characterize early embryonic defects in lethal T168,T181 knockin substitution mutants, and provide evidence for sequential LIN-5 N-terminal phosphorylation and dephosphorylation in dynein recruitment. Our data support that phosphorylation of multiple LIN-5 domains by different kinases contributes to a mechanism for spatiotemporal control of spindle positioning and chromosome segregation.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Cell Cycle Proteins/genetics , Cytoplasmic Dyneins/genetics , Animals , CRISPR-Cas Systems , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/metabolism , Casein Kinase I/genetics , Casein Kinase I/metabolism , Cell Cycle/genetics , Cell Cycle Proteins/metabolism , Cell Polarity/genetics , Cytoplasmic Dyneins/metabolism , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Phosphorylation , Protein Kinase C/genetics , Protein Kinase C/metabolism , Spindle Apparatus/genetics
20.
BMC Biol ; 14: 66, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27506200

ABSTRACT

BACKGROUND: Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. RESULTS: We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. CONCLUSIONS: The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.


Subject(s)
Caenorhabditis elegans Proteins/isolation & purification , Caenorhabditis elegans/metabolism , Guanylate Kinases/metabolism , Organ Specificity , Protein Interaction Mapping/methods , Amino Acid Sequence , Animals , Biotinylation , Caenorhabditis elegans Proteins/metabolism , Fluorescent Antibody Technique , Multiprotein Complexes/isolation & purification , Neurons/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...