Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sci Rep ; 14(1): 13549, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866854

ABSTRACT

Whilst. pharmacological therapies remain the cornerstone of pain management in chronic pain, factors including the current opioid epidemic have led to non-pharmacological techniques becoming a more attractive proposition. We explored the prevalence of medical device use and their treatment efficacy in non-cancer pain management. A systematic methodology was developed, peer reviewed and published in PROSPERO (CRD42021235384). Key words of medical device, pain management devices, chronic pain, lower back pain, back pain, leg pain and chronic pelvic pain using Science direct, PubMed, Web of Science, PROSPERO, MEDLINE, EMBASE, PorQuest and ClinicalTrials.gov. All clinical trials, epidemiology and mixed methods studies that reported the use of medical devices for non-cancer chronic pain management published between the 1st of January 1990 and the 30th of April 2022 were included. 13 studies were included in systematic review, of these 6 were used in the meta-analysis. Our meta-analysis for pain reduction showed that transcutaneous electrical nerve stimulation combined with instrument-assisted soft tissue mobilization treatment and pulsed electromagnetic therapy produced significant treatment on chronic lower back pain patients. Pooled evidence revealed the use of medical device related interventions resulted in 0.7 degree of pain reduction under a 0-10 scale. Significant improvement in disability scores, with a 7.44 degree reduction in disability level compared to a placebo using a 50 score range was also seen. Our analysis has shown that the optimal use of medical devices in a sustainable manner requires further research, needing larger cohort studies, greater gender parity, in a more diverse range of geographical locations.


Subject(s)
Bayes Theorem , Chronic Pain , Pain Management , Humans , Chronic Pain/therapy , Pain Management/methods , Low Back Pain/therapy , Transcutaneous Electric Nerve Stimulation/methods , Equipment and Supplies , Treatment Outcome
2.
Sci Rep ; 14(1): 1621, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238384

ABSTRACT

It is estimated 1.5 billion of the global population suffer from chronic pain with prevalence increasing with demographics including age. It is suggested long-term exposure to chronic could cause further health challenges reducing people's quality of life. Therefore, it is imperative to use effective treatment options. We explored the current pharmaceutical treatments available for chronic pain management to better understand drug efficacy and pain reduction. A systematic methodology was developed and published in PROSPERO (CRD42021235384). Keywords of opioids, acute pain, pain management, chronic pain, opiods, NSAIDs, and analgesics were used across PubMed, Science direct, ProQuest, Web of science, Ovid Psych INFO, PROSPERO, EBSCOhost, MEDLINE, ClinicalTrials.gov and EMBASE. All randomised controlled clinical trials (RCTs), epidemiology and mixed-methods studies published in English between the 1st of January 1990 and 30th of April 2022 were included. A total of 119 studies were included. The data was synthesised using a tri-partied statistical methodology of a meta-analysis (24), pairwise meta-analysis (24) and network meta-analysis (34). Mean, median, standard deviation and confidence intervals for various pain assessments were used as the main outcomes for pre-treatment pain scores at baseline, post-treatment pain scores and pain score changes of each group. Our meta-analysis revealed the significant reduction in chronic pain scores of patients taking NSAID versus non-steroidal opioid drugs was comparative to patients given placebo under a random effects model. Pooled evidence also indicated significant drug efficiency with Botulinum Toxin Type-A (BTX-A) and Ketamine. Chronic pain is a public health problem that requires far more effective pharmaceutical interventions with minimal better side-effect profiles which will aid to develop better clinical guidelines. The importance of understanding ubiquity of pain by clinicians, policy makers, researchers and academic scholars is vital to prevent social determinant which aggravates issue.


Subject(s)
Chronic Pain , Humans , Chronic Pain/drug therapy , Chronic Pain/chemically induced , Network Meta-Analysis , Quality of Life , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Pharmaceutical Preparations
3.
Lancet Infect Dis ; 23(8): 956-964, 2023 08.
Article in English | MEDLINE | ID: mdl-37060917

ABSTRACT

BACKGROUND: Rift Valley fever is a viral epidemic illness prevalent in Africa that can be fatal or result in debilitating sequelae in humans. No vaccines are available for human use. We aimed to evaluate the safety and immunogenicity of a non-replicating simian adenovirus-vectored Rift Valley fever (ChAdOx1 RVF) vaccine in humans. METHODS: We conducted a phase 1, first-in-human, open-label, dose-escalation trial in healthy adults aged 18-50 years at the Centre for Clinical Vaccinology and Tropical Medicine, Oxford, UK. Participants were required to have no serious comorbidities or previous history of receiving an adenovirus-based vaccine before enrolment. Participants were non-randomly allocated to receive a single ChAdOx1 RVF dose of either 5 × 109 virus particles (vp), 2·5 × 1010 vp, or 5 × 1010 vp administered intramuscularly into the deltoid of their non-dominant arm; enrolment was sequential and administration was staggered to allow for safety to be assessed before progression to the next dose. Primary outcome measures were assessment of adverse events and secondary outcome measures were Rift Valley fever neutralising antibody titres, Rift Valley fever GnGc-binding antibody titres (ELISA), and cellular response (ELISpot), analysed in all participants who received a vaccine. This trial is registered with ClinicalTrials.gov (NCT04754776). FINDINGS: Between June 11, 2021, and Jan 13, 2022, 15 volunteers received a single dose of either 5 × 109 vp (n=3), 2·5 × 1010 vp (n=6), or 5 × 1010 vp (n=6) ChAdOx1 RVF. Nine participants were female and six were male. 14 (93%) of 15 participants reported solicited local adverse reactions; injection-site pain was the most frequent (13 [87%] of 15). Ten (67%) of 15 participants (from the 2·5 × 1010 vp and 5 × 1010 vp groups only) reported systemic symptoms, which were mostly mild in intensity, the most common being headache (nine [60%] of 15) and fatigue (seven [47%]). All unsolicited adverse events reported within 28 days were either mild or moderate in severity; gastrointestinal symptoms were the most common reaction (at least possibly related to vaccination), occurring in four (27%) of 15 participants. Transient decreases in total white cell, lymphocyte, or neutrophil counts occurred at day 2 in some participants in the intermediate-dose and high-dose groups. Lymphopenia graded as severe occurred in two participants in the 5 × 1010 vp group at a single timepoint, but resolved at the subsequent follow-up visit. No serious adverse events occurred. Rift Valley fever neutralising antibodies were detectable across all dose groups, with all participants in the 5 × 1010 vp dose group having high neutralising antibody titres that peaked at day 28 after vaccination and persisted through the 3-month follow-up. High titres of binding IgG targeting Gc glycoprotein were detected whereas those targeting Gn were comparatively low. IFNγ cellular responses against Rift Valley fever Gn and Gc glycoproteins were observed in all participants except one in the 5 × 1010 vp dose group. These IFNγ responses peaked at 2 weeks after vaccination, were highest in the 5 × 1010 vp dose group, and tended to be more frequent against the Gn glycoprotein. INTERPRETATION: ChAdOx1 RVF was safe, well tolerated, and immunogenic when administered as a single dose in this study population. The data support further clinical development of ChAdOx1 RVF for human use. FUNDING: UK Department of Health and Social Care through the UK Vaccines Network, Oak Foundation, and the Wellcome Trust. TRANSLATION: For the Swahili translation of the abstract see Supplementary Materials section.


Subject(s)
Rift Valley Fever , Viral Vaccines , Humans , Adult , Male , Female , Animals , Rift Valley Fever/prevention & control , Antibodies, Neutralizing , Glycoproteins , United Kingdom , Immunogenicity, Vaccine , Antibodies, Viral , Double-Blind Method
4.
Wellcome Open Res ; 8: 182, 2023.
Article in English | MEDLINE | ID: mdl-38707489

ABSTRACT

Background: There are limited data on the immunogenicity of coronavirus disease 2019 (COVID-19) vaccines in African populations. Here we report the immunogenicity and safety of the ChAdOx1 nCoV-19 (AZD1222) vaccine from a phase 1/2 single-blind, randomised, controlled trial among adults in Kenya conducted as part of the early studies assessing vaccine performance in different geographical settings to inform Emergency Use Authorisation. Methods: We recruited and randomly assigned (1:1) 400 healthy adults aged ≥18 years in Kenya to receive ChAdOx1 nCoV-19 or control rabies vaccine, each as a two-dose schedule with a 3-month interval. The co-primary outcomes were safety, and immunogenicity assessed using total IgG enzyme-linked immunosorbent assay (ELISA) against SARS-CoV-2 spike protein 28 days after the second vaccination. Results: Between 28 th October 2020 and 19 th August 2021, 400 participants were enrolled and assigned to receive ChAdOx1 nCoV-19 (n=200) or rabies vaccine (n=200). Local and systemic adverse events were self-limiting and mild or moderate in nature. Three serious adverse events were reported but these were deemed unrelated to vaccination. The geometric mean anti-spike IgG titres 28 days after second dose vaccination were higher in the ChAdOx1 group (2773 ELISA units [EU], 95% CI 2447, 3142) than in the rabies vaccine group (61 EU, 95% CI 45, 81) and persisted over the 12 months follow-up. We did not identify any symptomatic infections or hospital admissions with respiratory illness and so vaccine efficacy against clinically apparent infection could not be measured. Vaccine efficacy against asymptomatic SARS-CoV-2 infection was 38.4% (95% CI -26.8%, 70.1%; p=0.188). Conclusions: The safety, immunogenicity and efficacy against asymptomatic infection of ChAdOx1 nCoV-19 among Kenyan adults was similar to that observed elsewhere in the world, but efficacy against symptomatic infection or severe disease could not be measured in this cohort. Pan-African Clinical Trials Registration: PACTR202005681895696 (11/05/2020).

5.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34897511

ABSTRACT

Penguins (Sphenisciformes) are an iconic order of flightless, diving seabirds distributed across a large latitudinal range in the Southern Hemisphere. The extensive area over which penguins are endemic is likely to have fostered variation in pathogen pressure, which in turn will have imposed differential selective pressures on the penguin immune system. At the front line of pathogen detection and response, the Toll-like receptors (TLRs) provide insight into host evolution in the face of microbial challenge. TLRs respond to conserved pathogen-associated molecular patterns and are frequently found to be under positive selection, despite retaining specificity for defined agonist classes. We undertook a comparative immunogenetics analysis of TLRs for all penguin species and found evidence of adaptive evolution that was largely restricted to the cell surface-expressed TLRs, with evidence of positive selection at, or near, key agonist-binding sites in TLR1B, TLR4, and TLR5. Intriguingly, TLR15, which is activated by fungal products, appeared to have been pseudogenized multiple times in the Eudyptes spp., but a full-length form was present as a rare haplotype at the population level. However, in vitro analysis revealed that even the full-length form of Eudyptes TLR15 was nonfunctional, indicating an ancestral cryptic pseudogenization prior to its eventual disruption multiple times in the Eudyptes lineage. This unusual pseudogenization event could provide an insight into immune adaptation to fungal pathogens such as Aspergillus, which is responsible for significant mortality in wild and captive bird populations.


Subject(s)
Spheniscidae , Animals , Evolution, Molecular , Selection, Genetic , Spheniscidae/genetics , Toll-Like Receptors/genetics
6.
Front Immunol ; 13: 1052297, 2022.
Article in English | MEDLINE | ID: mdl-36685492

ABSTRACT

Microbial colonisation is paramount to the normal development of the immune system, particularly at mucosal sites. However, the relationships between the microbiome and the adaptive immune repertoire have mostly been explored in rodents and humans. Here, we report a high-throughput sequencing analysis of the chicken TCRß repertoire and the influences of microbial colonisation on tissue-resident TCRß+ cells. The results reveal that the microbiome is an important driver of TCRß diversity in both intestinal tissues and the bursa of Fabricius, but not in the spleen. Of note, public TCRß sequences (shared across individuals) make a substantial contribution to the repertoire. Additionally, different tissues exhibit biases in terms of their V family and J gene usage, and these effects were influenced by the gut-associated microbiome. TCRß clonal expansions were identified in both colonised and germ-free birds, but differences between the groups were indicative of an influence of the microbiota. Together, these findings provide an insight into the avian adaptive immune system and the influence of the microbiota on the TCRß repertoire.


Subject(s)
Chickens , Immune System , Humans , Animals , Intestines
8.
Front Immunol ; 12: 763912, 2021.
Article in English | MEDLINE | ID: mdl-34804053

ABSTRACT

There is a critical need to develop superior influenza vaccines that provide broader protection. Influenza vaccines are traditionally tested in naive animals, although humans are exposed to influenza in the first years of their lives, but the impact of prior influenza exposure on vaccine immune responses has not been well studied. Pigs are an important natural host for influenza, are a source of pandemic viruses, and are an excellent model for human influenza. Here, we investigated the immunogenicity of the ChAdOx2 viral vectored vaccine, expressing influenza nucleoprotein, matrix protein 1, and neuraminidase in H1N1pdm09 pre-exposed pigs. We evaluated the importance of the route of administration by comparing intranasal, aerosol, and intramuscular immunizations. Aerosol delivery boosted the local lung T-cell and antibody responses, while intramuscular immunization boosted peripheral blood immunity. These results will inform how best to deliver vaccines in order to harness optimal protective immunity.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Viral Matrix Proteins/immunology , Adenoviridae/genetics , Aerosols , Animals , Cytokines/biosynthesis , Influenza Vaccines/administration & dosage , Neuraminidase/immunology , Nucleocapsid Proteins/immunology , Swine , Vaccination , Virus Shedding
9.
BMC Genomics ; 22(1): 719, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34610803

ABSTRACT

BACKGROUND: Despite increasing interest in γδ T cells and their non-classical behaviour, most studies focus on animals with low numbers of circulating γδ T cells, such as mice and humans. Arguably, γδ T cell functions might be more prominent in chickens where these cells form a higher proportion of the circulatory T cell compartment. The TCR repertoire defines different subsets of γδ T cells, and such analysis is facilitated by well-annotated TCR loci. γδ T cells are considered at the cusp of innate and adaptive immunity but most functions have been identified in γδ low species. A deeper understanding of TCR repertoire biology in γδ high and γδ low animals is critical for defining the evolution of the function of γδ T cells. Repertoire dynamics will reveal populations that can be classified as innate-like or adaptive-like as well as those that straddle this definition. RESULTS: Here, a recent discrepancy in the structure of the chicken TCR gamma locus is resolved, demonstrating that tandem duplication events have shaped the evolution of this locus. Importantly, repertoire sequencing revealed large differences in the usage of individual TRGV genes, a pattern conserved across multiple tissues, including thymus, spleen and the gut. A single TRGV gene, TRGV3.3, with a highly diverse private CDR3 repertoire dominated every tissue in all birds. TRGV usage patterns were partly explained by the TRGV-associated recombination signal sequences. Public CDR3 clonotypes represented varying proportions of the repertoire of TCRs utilising different TRGVs, with one TRGV dominated by super-public clones present in all birds. CONCLUSIONS: The application of repertoire analysis enabled functional annotation of the TCRG locus in a species with a high circulating γδ phenotype. This revealed variable usage of TCRGV genes across multiple tissues, a pattern quite different to that found in γδ low species (human and mouse). Defining the repertoire biology of avian γδ T cells will be key to understanding the evolution and functional diversity of these enigmatic lymphocytes in an animal that is numerically more reliant on them. Practically, this will reveal novel ways in which these cells can be exploited to improve health in medical and veterinary contexts.


Subject(s)
Chickens , Genome , Receptors, Antigen, T-Cell, gamma-delta , Animals , Chickens/genetics , Genomics , Receptors, Antigen, T-Cell, gamma-delta/genetics , T-Lymphocytes
10.
Integr Comp Biol ; 61(3): 969-980, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34050739

ABSTRACT

Engaging students in authentic research increases student knowledge, develops STEM skills, such as data analysis and scientific communication, and builds community. Creating authentic research opportunities in plant biology might be particularly crucial in addressing plant awareness disparity (PAD) (formerly known as plant blindness), producing graduates with botanical literacy, and preparing students for plant-focused careers. Our consortium created four CUREs (course-based undergraduate research experiences) focused on dual themes of plant biology and global change, designed to be utilized by early and late-career undergraduates across a variety of educational settings. We implemented these CURES for four semesters, in a total of 15 courses, at four institutions. Pre- and post-course assessments used the Affective Elements of Science Learning Questionnaire and parts of a "plant blindness" instrument to quantify changes in scientific self-efficacy, science values, scientific identity, and plant awareness or knowledge. The qualitative assessment also queried self-efficacy, science values, and scientific identity. Data revealed significant and positive shifts in awareness of and interest in plants across institutions. However, quantitative gains in self-efficacy and scientific identity were only found at two of four institutions tested. This project demonstrates that implementing plant CUREs can produce affective and cognitive gains across institutional types and course levels. Focusing on real-world research questions that capture students' imaginations and connect to their sense of place could create plant awareness while anchoring students in scientific identities. While simple interventions can alleviate PAD, implementing multiple CUREs per course, or focusing more on final CURE products, could promote larger and more consistent gains in student affect across institutions.


Subject(s)
Biology/education , Botany/education , Curriculum , Plants , Students , Communication , Humans , Research , Universities
11.
Mol Plant Pathol ; 22(6): 737-752, 2021 06.
Article in English | MEDLINE | ID: mdl-33724663

ABSTRACT

Phytophthora infestans is a destructive pathogen of potato and a model for investigations of oomycete biology. The successful application of a CRISPR gene editing system to P. infestans is so far unreported. We discovered that it is difficult to express CRISPR/Cas9 but not a catalytically inactive form in transformants, suggesting that the active nuclease is toxic. We were able to achieve editing with CRISPR/Cas12a using vectors in which the nuclease and its guide RNA were expressed from a single transcript. Using the elicitor gene Inf1 as a target, we observed editing of one or both alleles in up to 13% of transformants. Editing was more efficient when guide RNA processing relied on the Cas12a direct repeat instead of ribozyme sequences. INF1 protein was not made when both alleles were edited in the same transformant, but surprisingly also when only one allele was altered. We discovered that the isolate used for editing, 1306, exhibited monoallelic expression of Inf1 due to insertion of a copia-like element in the promoter of one allele. The element exhibits features of active retrotransposons, including a target site duplication, long terminal repeats, and an intact polyprotein reading frame. Editing occurred more often on the transcribed allele, presumably due to differences in chromatin structure. The Cas12a system not only provides a tool for modifying genes in P. infestans, but also for other members of the genus by expanding the number of editable sites. Our work also highlights a natural mechanism that remodels oomycete genomes.


Subject(s)
Gene Editing , Phytophthora infestans/genetics , Plant Diseases/parasitology , Solanum tuberosum/parasitology , Alleles , CRISPR-Cas Systems , Chromatin/genetics , Genomics , Phytophthora infestans/physiology
12.
Lancet Infect Dis ; 20(7): 816-826, 2020 07.
Article in English | MEDLINE | ID: mdl-32325038

ABSTRACT

BACKGROUND: Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection continue to rise in the Arabian Peninsula 7 years after it was first described in Saudi Arabia. MERS-CoV poses a significant risk to public health security because of an absence of currently available effective countermeasures. We aimed to assess the safety and immunogenicity of the candidate simian adenovirus-vectored vaccine expressing the full-length spike surface glycoprotein, ChAdOx1 MERS, in humans. METHODS: This dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial was done at the Centre for Clinical Vaccinology and Tropical Medicine (Oxford, UK) and included healthy people aged 18-50 years with negative pre-vaccination tests for HIV antibodies, hepatitis B surface antigen, and hepatitis C antibodies (and a negative urinary pregnancy test for women). Participants received a single intramuscular injection of ChAdOx1 MERS at three different doses: the low-dose group received 5 × 109 viral particles, the intermediate-dose group received 2·5 × 1010 viral particles, and the high-dose group received 5 × 1010 viral particles. The primary objective was to assess safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited, unsolicited, and serious adverse events after vaccination. The secondary objective was to assess the cellular and humoral immunogenicity of ChAdOx1 MERS, measured by interferon-γ-linked enzyme-linked immunospot, ELISA, and virus neutralising assays after vaccination. Participants were followed up for up to 12 months. This study is registered with ClinicalTrials.gov, NCT03399578. FINDINGS: Between March 14 and Aug 15, 2018, 24 participants were enrolled: six were assigned to the low-dose group, nine to the intermediate-dose group, and nine to the high-dose group. All participants were available for follow-up at 6 months, but five (one in the low-dose group, one in the intermediate-dose group, and three in the high-dose group) were lost to follow-up at 12 months. A single dose of ChAdOx1 MERS was safe at doses up to 5 × 1010 viral particles with no vaccine-related serious adverse events reported by 12 months. One serious adverse event reported was deemed to be not related to ChAdOx1 MERS. 92 (74% [95% CI 66-81]) of 124 solicited adverse events were mild, 31 (25% [18-33]) were moderate, and all were self-limiting. Unsolicited adverse events in the 28 days following vaccination considered to be possibly, probably, or definitely related to ChAdOx1 MERS were predominantly mild in nature and resolved within the follow-up period of 12 months. The proportion of moderate and severe adverse events was significantly higher in the high-dose group than in the intermediate-dose group (relative risk 5·83 [95% CI 2·11-17·42], p<0·0001) Laboratory adverse events considered to be at least possibly related to the study intervention were self-limiting and predominantly mild in severity. A significant increase from baseline in T-cell (p<0·003) and IgG (p<0·0001) responses to the MERS-CoV spike antigen was observed at all doses. Neutralising antibodies against live MERS-CoV were observed in four (44% [95% CI 19-73]) of nine participants in the high-dose group 28 days after vaccination, and 19 (79% [58-93]) of 24 participants had antibodies capable of neutralisation in a pseudotyped virus neutralisation assay. INTERPRETATION: ChAdOx1 MERS was safe and well tolerated at all tested doses. A single dose was able to elicit both humoral and cellular responses against MERS-CoV. The results of this first-in-human clinical trial support clinical development progression into field phase 1b and 2 trials. FUNDING: UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research.


Subject(s)
Dose-Response Relationship, Immunologic , Immunogenicity, Vaccine , Middle East Respiratory Syndrome Coronavirus/immunology , Viral Vaccines/administration & dosage , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral , Coronavirus Infections/prevention & control , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/genetics , United Kingdom , Vaccines, DNA , Young Adult
13.
Physiol Biochem Zool ; 91(4): 987-1004, 2018.
Article in English | MEDLINE | ID: mdl-29905500

ABSTRACT

Wild-living animals are subject to weather variability that may cause the generation of reactive oxygen species, resulting in oxidative stress and tissue damage, potentially driving demographic responses. Our 3-yr field study investigated the effects of seasonal weather conditions on biomarkers for oxidative stress, oxidative damage, and antioxidant defense in the European badger (Meles meles). We found age class effects: cubs were more susceptible to oxidative stress and oxidative damage than adults, especially very young cubs in the spring, when they also exhibited lower antioxidant biomarkers than adults. Although previous studies have found that intermediate spring and summer rainfall and warmer temperatures favor cub survival, counterintuitively these conditions were associated with more severe oxidative damage. Oxidative damage was high in cubs even when antioxidant biomarkers were high. In contrast, adult responses accorded with previous survival analyses. Wetter spring and summer conditions were associated with higher oxidative damage, but they were also associated with higher antioxidant biomarkers. Autumnal weather did not vary substantially from normative values, and thus effects were muted. Winter carryover effects were partially evident, with drier and milder conditions associated with greater oxidative damage in the following spring but also with higher antioxidant capacity. Plausibly, warmer conditions promoted more badger activity, with associated metabolic costs at a time of year when food supply is limited. Modeling biomarkers against projected climate change scenarios predicted greater future risks of oxidative damage, although not necessarily exceeding antioxidant capacity. This interdisciplinary approach demonstrates that individual adaptive physiological responses are associated with variation in natural environmental conditions.


Subject(s)
Antioxidants/physiology , Mustelidae/physiology , Oxidative Stress/physiology , Aging , Animals , Biomarkers , Climate Change , Lipid Peroxidation/physiology , Longevity , Mustelidae/blood , Principal Component Analysis , Seasons , Time Factors , Weather
14.
Sci Rep ; 7: 45470, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28382943

ABSTRACT

The European badger is recognised as a wildlife reservoir for bovine tuberculosis (bTB); the control of which is complex, costly and controversial. Despite the importance of badgers in bTB and the well-documented role for macrophages as anti-mycobacterial effector cells, badger macrophage (bdMφ) responses remain uncharacterised. Here, we demonstrate that bdMφ fail to produce nitric oxide (NO) or upregulate inducible nitric oxide synthase (iNOS) mRNA following Toll-like receptor (TLR) agonist treatment. BdMφ also failed to make NO after stimulation with recombinant badger interferon gamma (bdIFNγ) or a combination of bdIFNγ and lipopolysaccharide. Exposure of bdMφ to TLR agonists and/or bdIFNγ resulted in upregulated cytokine (IL1ß, IL6, IL12 and TNFα) mRNA levels indicating that these critical pathways were otherwise intact. Although stimulation with most TLR agonists resulted in strong cytokine mRNA responses, weaker responses were evident after exposure to TLR9 agonists, potentially due to very low expression of TLR9 in bdMφ. Both NO and TLR9 are important elements of innate immunity to mycobacteria, and these features of bdMφ biology would impair their capacity to resist bTB infection. These findings have significant implications for the development of bTB management strategies, and support the use of vaccination to reduce bTB infection in badgers.


Subject(s)
Macrophages/metabolism , Mustelidae/metabolism , Nitric Oxide/metabolism , Animals , Cattle , Imidazoles/pharmacology , Immunity, Innate , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Mustelidae/immunology , Mycobacterium/drug effects , Nitric Oxide Synthase Type II/classification , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phylogeny , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Toll-Like Receptor 9/antagonists & inhibitors , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Tuberculosis, Bovine/microbiology , Tuberculosis, Bovine/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects
15.
Dev Comp Immunol ; 73: 169-174, 2017 08.
Article in English | MEDLINE | ID: mdl-28322935

ABSTRACT

We propose a model by which an increase in the genomic modification, 5-hydroxymethylcytosine (5hmC), contributes to B cell death within the chicken bursa of Fabricus (BF) infected with infectious bursal disease virus (IBDV). Our findings indicate that, following an IBDV infection, Rhode Island Red (RIR) chickens have fewer surviving B cells and higher levels of 5hmC in the BF than the more resistant 15l line of birds. Elevated genomic 5hmC levels within the RIR BF are associated with markers of immune responses: infiltrating T cells and increased expression of CD40L, FasL and iNOS. Such changes correlate with genomic fragmentation and the presence of IBDV capsid protein, VP2. To explore the effects of CD40L, the immature B cell line, DT40, was exposed to recombinant chicken CD40L that resulted in changes in nuclear 5hmC distribution. Collectively, our observations suggest that T cell infiltration exacerbates early immunopathology within the BF during an IBDV infection contributing to B cell genomic instability and death to facilitate viral egress and immunosuppression.


Subject(s)
B-Lymphocytes/immunology , Birnaviridae Infections/veterinary , Chickens/immunology , DNA Methylation/immunology , Poultry Diseases/immunology , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/analysis , Animals , Chickens/virology , Infectious bursal disease virus/immunology , Infectious bursal disease virus/pathogenicity
16.
Sci Rep ; 6: 26787, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27279280

ABSTRACT

Host-genetic control of influenza virus infection has been the object of little attention. In this study we determined that two inbred lines of chicken differing in their genetic background , Lines 0 and C-B12, were respectively relatively resistant and susceptible to infection with the low pathogenicity influenza virus A/Turkey/England/647/77 as defined by substantial differences in viral shedding trajectories. Resistant birds, although infected, were unable to transmit virus to contact birds, as ultimately only the presence of a sustained cloacal shedding (and not oropharyngeal shedding) was critical for transmission. Restriction of within-bird transmission of virus occurred in the resistant line, with intra-nares or cloacal infection resulting in only local shedding and failing to transmit fully through the gastro-intestinal-pulmonary tract. Resistance to infection was independent of adaptive immune responses, including the expansion of specific IFNγ secreting cells or production of influenza-specific antibody. Genetic resistance to a novel H9N2 virus was less robust, though significant differences between host genotypes were still clearly evident. The existence of host-genetic determination of the outcome of influenza infection offers tools for the further dissection of this regulation and also for understanding the mechanisms of influenza transmission within and between birds.


Subject(s)
Chickens/virology , Influenza A Virus, H7N7 Subtype/pathogenicity , Influenza in Birds/genetics , Poultry Diseases/genetics , Virus Shedding , Adaptive Immunity , Animals , Antibodies, Viral/biosynthesis , Cells, Cultured , Chick Embryo , Chickens/genetics , Chickens/immunology , Cloaca/virology , Fibroblasts/virology , Genetic Predisposition to Disease , Genotype , Inbreeding , Influenza A Virus, H7N7 Subtype/immunology , Influenza A Virus, H7N7 Subtype/physiology , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/physiology , Influenza in Birds/immunology , Influenza in Birds/transmission , Influenza in Birds/virology , Oropharynx/virology , Poultry Diseases/transmission , Virus Replication
17.
J Immunol Methods ; 416: 40-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450002

ABSTRACT

A better understanding of the immune responses of chickens to the influenza virus is essential for the development of new strategies of vaccination and control. We have developed a method incorporating infected chicken kidney cells (CKC) in culture with splenocytes in an IFNγ ELISpot assay to enumerate ex vivo responses against influenza virus antigens. Splenocytes from birds challenged with influenza showed specific responses to the influenza virus, with responding cells being mainly CD8 positive. The utility of the assay was also demonstrated in the detection of an antigen specific enhancement of IFNγ producing cells from birds vaccinated with recombinant Fowlpox vectored influenza nucleoprotein and matrix protein.


Subject(s)
Chickens/immunology , Influenza in Birds/immunology , Kidney/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , CD8 Antigens/immunology , Cell Line , Chickens/virology , Coculture Techniques/methods , Dogs , Enzyme-Linked Immunospot Assay/methods , Influenza in Birds/virology , Interferon-gamma/immunology , Kidney/virology , Madin Darby Canine Kidney Cells , T-Lymphocytes/virology , Vaccination/methods
18.
Physiol Genomics ; 45(14): 597-605, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23695888

ABSTRACT

Human dilated cardiomyopathy (DCM) is characterized by congestive heart failure and altered myocardial gene expression. Epigenetic changes, including DNA methylation, are implicated in the development of DCM but have not been studied extensively. Clinical human DCM and nonfailing control left ventricle samples were individually analyzed for DNA methylation and expressional changes. Expression microarrays were used to identify 393 overexpressed and 349 underexpressed genes in DCM (GEO accession number: GSE43435). Gene promoter microarrays were utilized for DNA methylation analysis, and the resulting data were analyzed by two different computational methods. In the first method, we utilized subtractive analysis of DNA methylation peak data to identify 158 gene promoters exhibiting DNA methylation changes that correlated with expression changes. In the second method, a two-stage approach combined a particle swarm optimization feature selection algorithm and a discriminant analysis via mixed integer programming classifier to identify differentially methylated gene promoters. This analysis identified 51 hypermethylated promoters and six hypomethylated promoters in DCM with 100% cross-validation accuracy in the group assignment. Generation of a composite list of genes identified by subtractive analysis and two-stage computation analysis revealed four genes that exhibited differential DNA methylation by both methods in addition to altered gene expression. Computationally identified genes (AURKB, BTNL9, CLDN5, and TK1) define a central set of differentially methylated gene promoters that are important in classifying DCM. These genes have no previously reported role in DCM. This study documents that rigorous computational analysis applied to microarray analysis of healthy and diseased human heart samples helps to define clinically relevant DNA methylation and expressional changes in DCM.


Subject(s)
Cardiomyopathy, Dilated/genetics , DNA Methylation/genetics , Gene Expression Profiling/methods , Myocardium/metabolism , Aurora Kinase B/genetics , Butyrophilins , Claudin-5/genetics , Computational Biology , Heart Ventricles/metabolism , Humans , Membrane Glycoproteins/genetics , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Thymidine Kinase/genetics
19.
Physiol Genomics ; 45(14): 590-6, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23695887

ABSTRACT

This study addresses how depletion of human cardiac left ventricle (LV) mitochondrial DNA (mtDNA) and epigenetic nuclear DNA methylation promote cardiac dysfunction in human dilated cardiomyopathy (DCM) through regulation of pyrimidine nucleotide kinases. Samples of DCM LV and right ventricle (n = 18) were obtained fresh at heart transplant surgery. Parallel samples from nonfailing (NF) controls (n = 12) were from donor hearts found unsuitable for clinical use. We analyzed abundance of mtDNA and nuclear DNA (nDNA) using qPCR. LV mtDNA was depleted in DCM (50%, P < 0.05 each) compared with NF. No detectable change in RV mtDNA abundance occurred. DNA methylation and gene expression were determined using microarray analysis (GEO accession number: GSE43435). Fifty-seven gene promoters exhibited DNA hypermethylation or hypomethylation in DCM LVs. Among those, cytosolic thymidine kinase 1 (TK1) was hypermethylated. Expression arrays revealed decreased abundance of the TK1 mRNA transcript with no change in transcripts for other relevant thymidine metabolism enzymes. Quantitative immunoblots confirmed decreased TK1 polypeptide steady state abundance. TK1 activity remained unchanged in DCM samples while mitochondrial thymidine kinase (TK2) activity was significantly reduced. Compensatory TK activity was found in cardiac myocytes in the DCM LV. Diminished TK2 activity is mechanistically important to reduced mtDNA abundance and identified in DCM LV samples here. Epigenetic and genetic changes result in changes in mtDNA and in nucleotide substrates for mtDNA replication and underpin energy starvation in DCM.


Subject(s)
Cardiomyopathies/genetics , DNA, Mitochondrial/genetics , Epigenesis, Genetic/genetics , Thymidine Kinase/genetics , Blotting, Western , DNA Methylation/genetics , Humans , In Vitro Techniques , Middle Aged
20.
Eur J Immunol ; 43(7): 1940-52, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23589155

ABSTRACT

Licensed seasonal influenza vaccines induce antibody (Ab) responses against influenza hemagglutinin (HA) that are limited in their ability to protect against different strains of influenza. Cytotoxic T lymphocytes recognizing the conserved internal nucleoprotein (NP) and matrix protein (M1) are capable of mediating a cross-subtype immune response against influenza. Modified vaccinia Ankara (MVA) virus encoding NP and M1 (MVA-NP+M1) is designed to boost preexisting T-cell responses in adults in order to elicit a cross-protective immune response. We examined the coadministration of HA protein formulations and candidate MVA-NP+M1 influenza vaccines in murine, avian, and swine models. Ab responses postimmunization were measured by ELISA and pseudotype neutralization assays. Here, we demonstrate that MVA-NP+M1 can act as an adjuvant enhancing Ab responses to HA while simultaneously inducing potent T-cell responses to conserved internal Ags. We show that this regimen leads to the induction of cytophilic Ab isotypes that are capable of inhibiting hemagglutination and in the context of H5 exhibit cross-clade neutralization. The simultaneous induction of T cells and Ab responses has the potential to improve seasonal vaccine performance and could be employed in pandemic situations.


Subject(s)
Adjuvants, Immunologic/pharmacology , Influenza Vaccines/immunology , Viral Vaccines/immunology , Animals , Birds , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A virus/immunology , Male , Mice , Mice, Inbred C57BL , Nucleoproteins/immunology , Sus scrofa , Swine , Vaccines, DNA , Viral Core Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...