Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
2.
Sci Data ; 11(1): 215, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365981

ABSTRACT

Biological ocean data collected from ships find reuse in aggregations of historical data. These data are heavily relied upon to document long term change, validate satellite algorithms for ocean biology and are useful in assessing the performance of autonomous platforms and biogeochemical models. Existing aggregate products have largely been restricted to the surface ocean, omit physical data or have limited biological data. We present the first version of a BIOlogical ocean data reforMATting Effort (BIO-MATE) to begin to fill a gap in subsurface bio-physical data aggregates in a reproducible way. BIO-MATE uses open-source R software that reformats openly sourced published datasets from oceanographic voyages. These reformatted biological and physical data from underway sensors, profiling sensors, pigments analysis and particulate organic carbon analysis are stored in an interoperable BIO-MATE data product for easy access and use. Specific QA/QC protocols can now be easily applied to the BIO-MATE data product to support a variety of surface and subsurface applications.


Subject(s)
Oceans and Seas , Software
3.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365233

ABSTRACT

Microbial community dynamics on sinking particles control the amount of carbon that reaches the deep ocean and the length of time that carbon is stored, with potentially profound impacts on Earth's climate. A mechanistic understanding of the controls on sinking particle distributions has been hindered by limited depth- and time-resolved sampling and methods that cannot distinguish individual particles. Here, we analyze microbial communities on nearly 400 individual sinking particles in conjunction with more conventional composite particle samples to determine how particle colonization and community assembly might control carbon sequestration in the deep ocean. We observed community succession with corresponding changes in microbial metabolic potential on the larger sinking particles transporting a significant fraction of carbon to the deep sea. Microbial community richness decreased as particles aged and sank; however, richness increased with particle size and the attenuation of carbon export. This suggests that the theory of island biogeography applies to sinking marine particles. Changes in POC flux attenuation with time and microbial community composition with depth were reproduced in a mechanistic ecosystem model that reflected a range of POC labilities and microbial growth rates. Our results highlight microbial community dynamics and processes on individual sinking particles, the isolation of which is necessary to improve mechanistic models of ocean carbon uptake.


Subject(s)
Microbiota , Seawater , Carbon , Carbon Sequestration
4.
Nature ; 620(7972): 104-109, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532817

ABSTRACT

Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.


Subject(s)
Iron , Minerals , Seawater , Iron/analysis , Iron/chemistry , Iron/metabolism , Ligands , Minerals/analysis , Minerals/chemistry , Minerals/metabolism , Carbon Cycle , Datasets as Topic , Atlantic Ocean , Seawater/analysis , Seawater/chemistry , Bermuda , Time Factors , Seasons , Solutions/chemistry , Internationality
5.
7.
Commun Biol ; 6(1): 607, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280329

ABSTRACT

Carbon dioxide removal (CDR) and emissions reduction are essential to alleviate climate change. Ocean macroalgal afforestation (OMA) is a CDR method already undergoing field trials where nearshore kelps, on rafts, are purposefully grown offshore at scale. Dissolved iron (dFe) supply often limits oceanic phytoplankton growth, however this potentially rate-limiting factor is being overlooked in OMA discussions. Here, we determine the limiting dFe concentrations for growth and key physiological functions of a representative kelp species, Macrocystis pyrifera, considered as a promising candidate for OMA. dFe additions to oceanic seawater ranging 0.01-20.2 nM Fe' ‒ Fe' being the sum of dissolved inorganic Fe(III) species ‒ result in impaired physiological functions and kelp mortality. Kelp growth cannot be sustained at oceanic dFe concentrations, which are 1000-fold lower than required by M. pyrifera. OMA may require additional perturbation of offshore waters via dFe fertilisation.


Subject(s)
Kelp , Macrocystis , Iron , Oceans and Seas , Seawater , Carbon Dioxide
8.
J Phycol ; 59(4): 738-750, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37252690

ABSTRACT

Release of dissolved organic carbon (DOC) by seaweed underpins the microbial food web and is crucial for the coastal ocean carbon cycle. However, we know relatively little of seasonal DOC release patterns in temperate regions of the southern hemisphere. Strong seasonal changes in inorganic nitrogen availability, irradiance, and temperature regulate the growth of seaweeds on temperate reefs and influence DOC release. We seasonally surveyed and sampled seaweed at Coal Point, Tasmania, over 1 year. Dominant species with or without carbon dioxide (CO2 ) concentrating mechanisms (CCMs) were collected for laboratory experiments to determine seasonal rates of DOC release. During spring and summer, substantial DOC release (10.06-33.54 µmol C · g DW-1 · h-1 ) was observed for all species, between 3 and 27 times greater than during autumn and winter. Our results suggest that inorganic carbon (Ci ) uptake strategy does not regulate DOC release. Seasonal patterns of DOC release were likely a result of photosynthetic overflow during periods of high gross photosynthesis indicated by variations in tissue C:N ratios. For each season, we calculated a reef-scale net DOC release for seaweed at Coal Point of 7.84-12.9 g C · m-2 · d-1 in spring and summer, which was ~16 times greater than in autumn and winter (0.2-1.0 g C · m-2 · d-1 ). Phyllospora comosa, which dominated the biomass, contributed the most DOC to the coastal ocean, up to ~14 times more than Ecklonia radiata and the understory assemblage combined. Reef-scale DOC release was driven by seasonal changes in seaweed physiology rather than seaweed biomass.


Subject(s)
Phaeophyceae , Seaweed , Seasons , Dissolved Organic Matter , Carbon Cycle , Coal , Oceans and Seas
9.
Sci Total Environ ; 885: 163699, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37149169

ABSTRACT

Seaweed (macroalgae) has attracted attention globally given its potential for climate change mitigation. A topical and contentious question is: Can seaweeds' contribution to climate change mitigation be enhanced at globally meaningful scales? Here, we provide an overview of the pressing research needs surrounding the potential role of seaweed in climate change mitigation and current scientific consensus via eight key research challenges. There are four categories where seaweed has been suggested to be used for climate change mitigation: 1) protecting and restoring wild seaweed forests with potential climate change mitigation co-benefits; 2) expanding sustainable nearshore seaweed aquaculture with potential climate change mitigation co-benefits; 3) offsetting industrial CO2 emissions using seaweed products for emission abatement; and 4) sinking seaweed into the deep sea to sequester CO2. Uncertainties remain about quantification of the net impact of carbon export from seaweed restoration and seaweed farming sites on atmospheric CO2. Evidence suggests that nearshore seaweed farming contributes to carbon storage in sediments below farm sites, but how scalable is this process? Products from seaweed aquaculture, such as the livestock methane-reducing seaweed Asparagopsis or low carbon food resources show promise for climate change mitigation, yet the carbon footprint and emission abatement potential remains unquantified for most seaweed products. Similarly, purposely cultivating then sinking seaweed biomass in the open ocean raises ecological concerns and the climate change mitigation potential of this concept is poorly constrained. Improving the tracing of seaweed carbon export to ocean sinks is a critical step in seaweed carbon accounting. Despite carbon accounting uncertainties, seaweed provides many other ecosystem services that justify conservation and restoration and the uptake of seaweed aquaculture will contribute to the United Nations Sustainable Development Goals. However, we caution that verified seaweed carbon accounting and associated sustainability thresholds are needed before large-scale investment into climate change mitigation from seaweed projects.


Subject(s)
Ecosystem , Seaweed , Carbon Dioxide , Climate Change , Carbon Sequestration , Carbon
10.
Nat Commun ; 14(1): 1278, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36890139

ABSTRACT

At high latitudes, the biological carbon pump, which exports organic matter from the surface ocean to the interior, has been attributed to the gravitational sinking of particulate organic carbon. Conspicuous deficits in ocean carbon budgets challenge this as a sole particle export pathway. Recent model estimates revealed that particle injection pumps have a comparable downward flux of particulate organic carbon to the biological gravitational pump, but with different seasonality. To date, logistical constraints have prevented concomitant and extensive observations of these mechanisms. Here, using year-round robotic observations and recent advances in bio-optical signal analysis, we concurrently investigated the functioning of two particle injection pumps, the mixed layer and eddy subduction pumps, and the gravitational pump in Southern Ocean waters. By comparing three annual cycles in contrasting physical and biogeochemical environments, we show how physical forcing, phytoplankton phenology and particle characteristics influence the magnitude and seasonality of these export pathways, with implications for carbon sequestration efficiency over the annual cycle.

11.
mSystems ; 8(2): e0126022, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36794943

ABSTRACT

Viruses can alter the abundance, evolution, and metabolism of microorganisms in the ocean, playing a key role in water column biogeochemistry and global carbon cycles. Large efforts to measure the contribution of eukaryotic microorganisms (e.g., protists) to the marine food web have been made, yet the in situ activities of the ecologically relevant viruses that infect these organisms are not well characterized. Viruses within the phylum Nucleocytoviricota ("giant viruses") are known to infect a diverse range of ecologically relevant marine protists, yet how these viruses are influenced by environmental conditions remains under-characterized. By employing metatranscriptomic analyses of in situ microbial communities along a temporal and depth-resolved gradient, we describe the diversity of giant viruses at the Southern Ocean Time Series (SOTS), a site within the subpolar Southern Ocean. Using a phylogeny-guided taxonomic assessment of detected giant virus genomes and metagenome-assembled genomes, we observed depth-dependent structuring of divergent giant virus families mirroring dynamic physicochemical gradients in the stratified euphotic zone. Analyses of transcribed metabolic genes from giant viruses suggest viral metabolic reprogramming of hosts from the surface to a 200-m depth. Lastly, using on-deck incubations reflecting a gradient of iron availability, we show that modulating iron regimes influences the activity of giant viruses in the field. Specifically, we show enhanced infection signatures of giant viruses under both iron-replete and iron-limited conditions. Collectively, these results expand our understanding of how the water column's vertical biogeography and chemical surroundings affect an important group of viruses within the Southern Ocean. IMPORTANCE The biology and ecology of marine microbial eukaryotes is known to be constrained by oceanic conditions. In contrast, how viruses that infect this important group of organisms respond to environmental change is less well known, despite viruses being recognized as key microbial community members. Here, we address this gap in our understanding by characterizing the diversity and activity of "giant" viruses within an important region in the sub-Antarctic Southern Ocean. Giant viruses are double-stranded DNA (dsDNA) viruses of the phylum Nucleocytoviricota and are known to infect a wide range of eukaryotic hosts. By employing a metatranscriptomics approach using both in situ samples and microcosm manipulations, we illuminated both the vertical biogeography and how changing iron availability affects this primarily uncultivated group of protist-infecting viruses. These results serve as a foundation for our understanding of how the open ocean water column structures the viral community, which can be used to guide models of the viral impact on marine and global biogeochemical cycling.


Subject(s)
Giant Viruses , Virus Diseases , Viruses , Humans , Giant Viruses/genetics , Iron , Oceans and Seas , Viruses/genetics , Water , Eukaryota
12.
Microorganisms ; 10(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014073

ABSTRACT

In the Subantarctic sector of the Southern Ocean, vertical entrainment of iron (Fe) triggers the seasonal productivity cycle but diminishing physical supply during the spring to summer transition forces microbial assemblages to rapidly acclimate. Here, we tested how phytoplankton and bacteria within an isolated eddy respond to different dissolved Fe (DFe)/ligand inputs. We used three treatments: one that mimicked the entrainment of new DFe (Fe-NEW), another in which DFe was supplied from bacterial regeneration of particles (Fe-REG), and a control with no addition of DFe (Fe-NO). After 6 days, 3.5 (Fe-NO, Fe-NEW) to 5-fold (Fe-REG) increases in Chlorophyll a were observed. These responses of the phytoplankton community were best explained by the differences between the treatments in the amount of DFe recycled during the incubation (Fe-REG, 15% recycled c.f. 40% Fe-NEW, 60% Fe-NO). This additional recycling was more likely mediated by bacteria. By day 6, bacterial production was comparable between Fe-NO and Fe-NEW but was approximately two-fold higher in Fe-REG. A preferential response of phytoplankton (haptophyte-dominated) relative to high nucleic acid (HNA) bacteria was also found in the Fe-REG treatment while the relative proportion of diatoms increased faster in the Fe-NEW and Fe-NO treatments. Comparisons between light and dark incubations further confirmed the competition between picophytoplankton and HNA for DFe. Overall, our results demonstrate great versatility by microorganisms to use different Fe sources that results in highly efficient Fe recycling within surface waters. This study also encourages future research to further investigate the interactions between functional groups of microbes (e.g. HNA and cyanobacteria) to better constraint modeling in Fe and carbon biogeochemical cycles.

13.
J Plankton Res ; 44(4): 485-495, 2022.
Article in English | MEDLINE | ID: mdl-35898813

ABSTRACT

The necessity to understand the influence of global ocean change on biota has exposed wide-ranging gaps in our knowledge of the fundamental principles that underpin marine life. Concurrently, physiological research has stagnated, in part driven by the advent and rapid evolution of molecular biological techniques, such that they now influence all lines of enquiry in biological oceanography. This dominance has led to an implicit assumption that physiology is outmoded, and advocacy that ecological and biogeochemical models can be directly informed by omics. However, the main modeling currencies are biological rates and biogeochemical fluxes. Here, we ask: how do we translate the wealth of information on physiological potential from omics-based studies to quantifiable physiological rates and, ultimately, to biogeochemical fluxes? Based on the trajectory of the state-of-the-art in biomedical sciences, along with case-studies from ocean sciences, we conclude that it is unlikely that omics can provide such rates in the coming decade. Thus, while physiological rates will continue to be central to providing projections of global change biology, we must revisit the metrics we rely upon. We advocate for the co-design of a new generation of rate measurements that better link the benefits of omics and physiology.

14.
Nat Ecol Evol ; 6(6): 675-683, 2022 06.
Article in English | MEDLINE | ID: mdl-35449458

ABSTRACT

Our scientific understanding of climate change makes clear the necessity for both emission reduction and carbon dioxide removal (CDR). The ocean with its large surface area, great depths and long coastlines is central to developing CDR approaches commensurate with the scale needed to limit warming to below 2 °C. Many proposed marine CDR approaches rely on spatial upscaling along with enhancement and/or acceleration of the rates of naturally occurring processes. One such approach is 'ocean afforestation', which involves offshore transport and concurrent growth of nearshore macroalgae (seaweed), followed by their export into the deep ocean. The purposeful occupation for months of open ocean waters by macroalgae, which do not naturally occur there, will probably affect offshore ecosystems through a range of biological threats, including altered ocean chemistry and changed microbial physiology and ecology. Here, we present model simulations of ocean afforestation and link these to lessons from other examples of offshore dispersal, including rafting plastic debris, and discuss the ramifications for offshore ecosystems. We explore what additional metrics are required to assess the ecological implications of this proposed CDR. In our opinion, these ecological metrics must have equal weight to CDR capacity in the development of initial trials, pilot studies and potential licensing.


Subject(s)
Ecosystem , Seaweed , Carbon Dioxide , Climate Change , Oceans and Seas , Seaweed/physiology
15.
J Phycol ; 58(3): 347-363, 2022 06.
Article in English | MEDLINE | ID: mdl-35286717

ABSTRACT

Carbon sequestration is defined as the secure storage of carbon-containing molecules for >100 years, and in the context of carbon dioxide removal for climate mitigation, the origin of this CO2 is from the atmosphere. On land, trees globally sequester substantial amounts of carbon in woody biomass, and an analogous role for seaweeds in ocean carbon sequestration has been suggested. The purposeful expansion of natural seaweed beds and aquaculture systems, including into the open ocean (ocean afforestation), has been proposed as a method of increasing carbon sequestration and use in carbon trading and offset schemes. However, to verify whether CO2 fixed by seaweeds through photosynthesis leads to carbon sequestration is extremely complex in the marine environment compared to terrestrial systems, because of the need to jointly consider: the comparatively rapid turnover of seaweed biomass, tracing the fate of carbon via particulate and dissolved organic carbon pathways in dynamic coastal waters, and the key role of atmosphere-ocean CO2 exchange. We propose a Forensic Carbon Accounting approach, in which a thorough analysis of carbon flows between the atmosphere and ocean, and into and out of seaweeds would be undertaken, for assessing the magnitude of CO2 removal and robust attribution of carbon sequestration to seaweeds.


Subject(s)
Carbon Sequestration , Seaweed , Atmosphere , Carbon Dioxide/metabolism , Climate , Seaweed/metabolism
16.
Environ Microbiol ; 24(5): 2449-2466, 2022 05.
Article in English | MEDLINE | ID: mdl-35049099

ABSTRACT

We investigated the Southern Ocean (SO) prokaryote community structure via zero-radius operational taxonomic unit (zOTU) libraries generated from 16S rRNA gene sequencing of 223 full water column profiles. Samples reveal the prokaryote diversity trend between discrete water masses across multiple depths and latitudes in Indian (71-99°E, summer) and Pacific (170-174°W, autumn-winter) sectors of the SO. At higher taxonomic levels (phylum-family) we observed water masses to harbour distinct communities across both sectors, but observed sectorial variations at lower taxonomic levels (genus-zOTU) and relative abundance shifts for key taxa such as Flavobacteria, SAR324/Marinimicrobia, Nitrosopumilus and Nitrosopelagicus at both epi- and bathy-abyssopelagic water masses. Common surface bacteria were abundant in several deep-water masses and vice-versa suggesting connectivity between surface and deep-water microbial assemblages. Bacteria from same-sector Antarctic Bottom Water samples showed patchy, high beta-diversity which did not correlate well with measured environmental parameters or geographical distance. Unconventional depth distribution patterns were observed for key archaeal groups: Crenarchaeota was found across all depths in the water column and persistent high relative abundances of common epipelagic archaeon Nitrosopelagicus was observed in deep-water masses. Our findings reveal substantial regional variability of SO prokaryote assemblages that we argue should be considered in wide-scale SO ecosystem microbial modelling.


Subject(s)
Ecosystem , Seawater , Archaea/genetics , Bacteria/genetics , Biodiversity , Oceans and Seas , Pacific Ocean , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Water
17.
ISME Commun ; 2(1): 54, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-37938659

ABSTRACT

The trace metal iron (Fe) controls the diversity and activity of phytoplankton across the surface oceans, a paradigm established through decades of in situ and mesocosm experimental studies. Despite widespread Fe-limitation within high-nutrient, low chlorophyll (HNLC) waters, significant contributions of the cyanobacterium Synechococcus to the phytoplankton stock can be found. Correlations among differing strains of Synechococcus across different Fe-regimes have suggested the existence of Fe-adapted ecotypes. However, experimental evidence of high- versus low-Fe adapted strains of Synechococcus is lacking, and so we investigated the transcriptional responses of microbial communities inhabiting the HNLC, sub-Antarctic region of the Southern Ocean during the Spring of 2018. Analysis of metatranscriptomes generated from on-deck incubation experiments reflecting a gradient of Fe-availabilities reveal transcriptomic signatures indicative of co-occurring Synechococcus ecotypes adapted to differing Fe-regimes. Functional analyses comparing low-Fe and high-Fe conditions point to various Fe-acquisition mechanisms that may allow persistence of low-Fe adapted Synechococcus under Fe-limitation. Comparison of in situ surface conditions to the Fe-titrations indicate ecological relevance of these mechanisms as well as persistence of both putative ecotypes within this region. This Fe-titration approach, combined with transcriptomics, highlights the short-term responses of the in situ phytoplankton community to Fe-availability that are often overlooked by examining genomic content or bulk physiological responses alone. These findings expand our knowledge about how phytoplankton in HNLC Southern Ocean waters adapt and respond to changing Fe supply.

18.
Nature ; 600(7889): 395-407, 2021 12.
Article in English | MEDLINE | ID: mdl-34912083

ABSTRACT

The ocean is warming, losing oxygen and being acidified, primarily as a result of anthropogenic carbon emissions. With ocean warming, acidification and deoxygenation projected to increase for decades, extreme events, such as marine heatwaves, will intensify, occur more often, persist for longer periods of time and extend over larger regions. Nevertheless, our understanding of oceanic extreme events that are associated with warming, low oxygen concentrations or high acidity, as well as their impacts on marine ecosystems, remains limited. Compound events-that is, multiple extreme events that occur simultaneously or in close sequence-are of particular concern, as their individual effects may interact synergistically. Here we assess patterns and trends in open ocean extremes based on the existing literature as well as global and regional model simulations. Furthermore, we discuss the potential impacts of individual and compound extremes on marine organisms and ecosystems. We propose a pathway to improve the understanding of extreme events and the capacity of marine life to respond to them. The conditions exhibited by present extreme events may be a harbinger of what may become normal in the future. As a consequence, pursuing this research effort may also help us to better understand the responses of marine organisms and ecosystems to future climate change.


Subject(s)
Acids/analysis , Aquatic Organisms , Climate Models , Ecosystem , Global Warming/statistics & numerical data , Oceans and Seas , Oxygen/analysis , Acids/chemistry , Animals , Aquatic Organisms/physiology , Extreme Heat/adverse effects , Food Chain , Hydrogen-Ion Concentration , Oxygen/chemistry
20.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34544897

ABSTRACT

Mitigating global climate change will require gigaton-scale carbon dioxide removal (CDR) as a supplement to rapid emissions reduction. The oceans cover 71% of the Earth surface and have the potential to provide much of the required CDR. However, none of the proposed marine CDR (mCDR) methods is sufficiently well understood to determine their real-world efficiency and environmental side effects. Here, we argue that using natural mCDR analogs should become the third interconnecting pillar in the mCDR assessment as they bridge the gap between numerical simulations (i.e., large scale/reduced complexity) and experimental studies (i.e., small scale/high complexity). Natural mCDR analogs occur at no cost, can provide a wealth of data to inform mCDR, and do not require legal permission or social license for their study. We propose four simple criteria to identify particularly useful analogs: 1) large scale, 2) abruptness of perturbation, 3) availability of unperturbed control sites, and 4) reoccurrence. Based on these criteria, we highlight four examples: 1) equatorial upwelling as a natural analog for artificial upwelling, 2) downstream of Kerguelen Island for ocean iron fertilization, 3) the Black and Caspian Seas for ocean alkalinity enhancement, and 4) the Great Atlantic Sargassum Belt for ocean afforestation. These natural analogs provide a reality check for experimental assessments and numerical modeling of mCDR. Ultimately, projections of mCDR efficacy and sustainability supported by observations from natural analogs will provide the real-world context for the public debate and will facilitate political decisions on mCDR implementation. We anticipate that a rigorous investigation of natural analogs will fast-forward the urgently needed assessment of mCDR.

SELECTION OF CITATIONS
SEARCH DETAIL
...