Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
RSC Med Chem ; 15(6): 2063-2079, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38911147

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) comprise the second largest class of new psychoactive substances (NPS), and typically α-amino acid moieties are incorporated as part of their design. Limited investigation has been performed into elucidating structure-activity relationships around commonly used α-amino acid-derived head groups, mainly with valine and tert-leucine-derived compounds previously described. As such, proactive synthesis, characterisation and pharmacological evaluation were performed to explore structure-activity relationships of 15 α-amino acid derivatives, with both the natural isomers and their enantiomers at CB1 and CB2 investigated using a fluorescence-based membrane potential assay. This library was based around the detected SCRAs MPP-5F-PICA, MMB-5F-PICA, and MDMB-5F-PICA, with the latter showing significant receptor activation at CB1 (pEC50 = 8.34 ± 0.05 M; E max = 108 ± 3%) and CB2 (pEC50 = 8.13 ± 0.07 M; E max = 99 ± 2%). Most valine and leucine derivatives were potent and efficacious SCRAs, while smaller derivatives generally showed reduced activity at CB1 and CB2, and larger derivatives also showed reduced activity. SAR trends observed were rationalised via in silico induced fit docking. Overall, while natural enantiomers showed equipotent or greater activity than the unnatural isomers in most cases, this was not universal. As such, a number of these compounds should be monitored as emerging NPS, and various substituents described herein.

2.
ACS Chem Neurosci ; 15(11): 2160-2181, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38766866

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) are a growing class of new psychoactive substances (NPS) commonly derived from an N-alkylated indole, indazole, or 7-azaindole scaffold. Diversification of this core (at the 3-position) with amide-linked pendant amino acid groups and modular N-alkylation (of the indole/indazole/7-azaindole core) ensures that novel SCRAs continue to enter the illicit drug market rapidly. In response to the large number of SCRAs that have been detected, pharmacological evaluation of this NPS class has become increasingly common. Adamantane-derived SCRAs have consistently appeared throughout the market since 2011, and as such, a systematic set of these derivatives was synthesized and pharmacologically evaluated. Deuterated and fluorinated adamantane derivatives were prepared to evaluate typical hydrogen bioisosteres, as well as evaluation of the newly detected AFUBIATA.


Subject(s)
Cannabinoid Receptor Agonists , Halogenation , Indazoles , Indoles , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/chemical synthesis , Structure-Activity Relationship , Animals , Indazoles/pharmacology , Indazoles/chemistry , Indazoles/chemical synthesis , Humans , Indoles/pharmacology , Indoles/chemistry , Adamantane/analogs & derivatives , Adamantane/pharmacology , Adamantane/chemistry , Deuterium , Mice , Valine/analogs & derivatives
3.
ACS Chem Neurosci ; 15(9): 1787-1812, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38597712

ABSTRACT

ADB-HEXINACA has been recently reported as a synthetic cannabinoid receptor agonist (SCRA), one of the largest classes of new psychoactive substances (NPSs). This compound marks the entry of the n-hexyl tail group into the SCRA landscape, which has continued in the market with recent, newly detected SCRAs. As such, a proactive characterization campaign was undertaken, including the synthesis, characterization, and pharmacological evaluation of ADB-HEXINACA and a library of 41 closely related analogues. Two in vitro functional assays were employed to assess activity at CB1 and CB2 cannabinoid receptors, measuring Gßγ-coupled agonism through a fluorescence-based membrane potential assay (MPA) and ß-arrestin 2 (ßarr2) recruitment via a live cell-based nanoluciferase complementation reporter assay. ADB-HEXINACA was a potent and efficacious CB1 agonist (CB1 MPA pEC50 = 7.87 ± 0.12 M; Emax = 124 ± 5%; ßarr2 pEC50 = 8.27 ± 0.14 M; Emax = 793 ± 42.5), as were most compounds assessed. Isolation of the heterocyclic core and alkyl tails allowed for the comprehensive characterization of structure-activity relationships in this compound class, which were rationalized in silico via induced fit docking experiments. Overall, most compounds assessed are possibly emerging NPSs.


Subject(s)
Cannabinoid Receptor Agonists , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/chemical synthesis , Humans , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , HEK293 Cells , Structure-Activity Relationship , Animals
4.
ACS Chem Neurosci ; 14(1): 35-52, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36530139

ABSTRACT

Over 200 synthetic cannabinoid receptor agonists (SCRAs) have been identified as new psychoactive substances. Effective monitoring and characterization of SCRAs are hindered by the rapid pace of structural evolution. Ahead of possible appearance on the illicit drug market, new SCRAs were synthesized to complete a systematic library of cumyl-indole- (e.g., CUMYL-CPrMICA, CUMYL-CPMICA) and cumyl-indazole-carboxamides (e.g., CUMYL-CPrMINACA, CUMYL-CPMINACA), encompassing butyl, pentyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, and cyclohexylmethyl tails. Comprehensive pharmacological characterization was performed with three assay formats, monitoring the recruitment of either wild-type or C-terminally truncated (ßarr2d366) ß-arrestin2 to the activated cannabinoid 1 receptor (CB1) or monitoring Gßγ-mediated membrane hyperpolarization. Altered compound characterization was observed when comparing derived potency (EC50) and efficacy (Emax) values from both assays monitoring the same or a different signaling event, whereas ranges and ranking orders were similar. Structure-activity relationships (SAR) were assessed in threefold, resulting in the identification of the pendant tail as a critical pharmacophore, with the optimal chain length for CB1 activation approximating an n-pentyl (e.g., cyclopentylmethyl or cyclohexylmethyl tail). The activity of the SCRAs encompassing cyclic tails decreased with decreasing number of carbons forming the cyclic moiety, with CUMYL-CPrMICA showing the least CB1 activity in all assay formats. The SARs were rationalized via molecular docking, demonstrating the importance of the optimal steric contribution of the hydrophobic tail. While SAR conclusions remained largely unchanged, the differential compound characterization by both similar and different assay designs emphasizes the importance of detailing specific assay characteristics to allow adequate interpretation of potencies and efficacies.


Subject(s)
Cannabinoids , Molecular Docking Simulation , Cannabinoids/pharmacology , Cannabinoids/chemistry , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/chemistry , Indazoles/pharmacology , Indazoles/chemistry , Receptor, Cannabinoid, CB1
5.
Front Psychiatry ; 13: 1010501, 2022.
Article in English | MEDLINE | ID: mdl-36245876

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) continue to make up a significant portion new psychoactive substances (NPS) detected and seized worldwide. Due to their often potent activation of central cannabinoid receptors in vivo, use of SCRAs can result in severe intoxication, in addition to other adverse health effects. Recent detections of AB-4CN-BUTICA, MMB-4CN-BUTINACA, MDMB-4F-BUTICA and MDMB-4F-BUTINACA mark a continuation in the appearance of SCRAs bearing novel tail substituents. The proactive characterization campaign described here has facilitated the detection of several new SCRAs in toxicological case work. Here we detail the synthesis, characterization, and pharmacological evaluation of recently detected SCRAs, as well as a systematic library of 32 compounds bearing head, tail, and core group combinations likely to appear in future. In vitro radioligand binding assays revealed most compounds showed moderate to high affinity at both CB1 (pK i = < 5 to 8.89 ± 0.09 M) and CB2 (pK i = 5.49 ± 0.03 to 9.92 ± 0.09 M) receptors. In vitro functional evaluation using a fluorescence-based membrane potential assay showed that most compounds were sub-micromolar to sub-nanomolar agonists at CB1 (pEC50 = < 5 to 9.48 ± 0.14 M) and CB2 (pEC50 = 5.92 ± 0.16 to 8.64 ± 0.15 M) receptors. An in silico receptor-ligand docking approach was utilized to rationalize binding trends for CB2 with respect to the tail substituent, and indicated that rigidity in this region (i.e., 4-cyanobutyl) was detrimental to affinity.

6.
ACS Chem Neurosci ; 13(9): 1395-1409, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35442021

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) are a large and growing class of new psychoactive substances (NPSs). Two recently identified compounds, MEPIRAPIM and 5F-BEPIRAPIM (NNL-2), have not been confirmed as agonists of either cannabinoid receptor subtype but share structural similarities with both SCRAs and a class of T-type calcium channel (CaV3) inhibitors under development as new treatments for epilepsy and pain. In this study, MEPIRAPIM and 5F-BEPIRAPIM and 10 systematic analogues were synthesized, analytically characterized, and pharmacologically evaluated using in vitro cannabinoid receptor and CaV3 assays. Several compounds showed micromolar affinities for CB1 and/or CB2, with several functioning as low potency agonists of CB1 and CB2 in a membrane potential assay. 5F-BEPIRAPIM and four other derivatives were identified as potential CaV3 inhibitors through a functional calcium flux assay (>70% inhibition), which was further confirmed using whole-cell patch-clamp electrophysiology. Additionally, MEPIRAPIM and 5F-BEPIRAPIM were evaluated in vivo using a cannabimimetic mouse model. Despite detections of MEPIRAPIM and 5F-BEPIRAPIM in the NPS market, only the highest MEPIRAPIM dose (30 mg/kg) elicited a mild hypothermic response in mice, with no hypothermia observed for 5F-BEPIRAPIM, suggesting minimal central CB1 receptor activity.


Subject(s)
Calcium Channels, T-Type , Cannabinoids , Hypothermia , Animals , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/chemistry , Cannabinoids/pharmacology , Indazoles/pharmacology , Mice , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Receptors, Cannabinoid
7.
ACS Chem Neurosci ; 13(8): 1281-1295, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35404067

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances (NPS). They commonly comprise N-alkylated indole, indazole, or 7-azaindole scaffolds with amide-linked pendant amino acid groups. To explore the contribution of the amino acid side chain to the cannabinoid pharmacology of SCRA NPS, a systematic library of side chain-modified SCRAs was prepared based on the recent detections of amino acid derivatives 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), and 20 (NNL-1). In vitro binding affinities and functional activities at cannabinoid type 1 and 2 receptors (CB1 and CB2, respectively) were determined for all the library members using radioligand competition experiments and a fluorescence-based membrane potential assay. Binding affinities and functional activities varied widely across compounds (Ki = 0.32 to >10 000 nM, EC50 = 0.24-1259 nM), with several clear structure-activity relationships (SARs) emerging. Affinity and potency at CB1 changed as a function of the heterocyclic core (indazole > indole > 7-azaindole) and the pendant amino acid side chain (tert-butyl > iso-propyl > iso-butyl > benzyl > ethyl > methyl > hydrogen). Ensemble docking at CB1 revealed a clear steric basis for observed SAR trends. Interestingly, although 15 (PX-1) and 19 (PX-2) have been detected in recreational drug markets, they failed to induce centrally CB1-mediated effects (e.g., hypothermia) in mice using radiobiotelemetry. Together, these data provide insights regarding structural contributions to the cannabimimetic profiles of 17 (5F-AB-PINACA), 18 (5F-ADB-PINACA), 15 (PX-1), 19 (PX-2), 20 (NNL-1), and other SCRA NPS.


Subject(s)
Cannabinoid Receptor Agonists , Cannabinoids , Animals , Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/chemistry , Central Nervous System Agents , Indazoles/chemistry , Indazoles/pharmacology , Mice , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2 , Receptors, Cannabinoid , Valine/analogs & derivatives
8.
RSC Med Chem ; 13(2): 156-174, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35308023

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) remain one the most prevalent classes of new psychoactive substances (NPS) worldwide, and examples are generally poorly characterised at the time of first detection. We have synthesised a systematic library of amino acid-derived indole-, indazole-, and 7-azaindole-3-carboxamides related to recently detected drugs ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA, and characterised these ligands for in vitro binding and agonist activity at cannabinoid receptor subtypes 1 and 2 (CB1 and CB2), and in vivo cannabimimetic activity. All compounds showed high affinity for CB1 (K i 0.299-538 nM) and most at CB2 (K i = 0.912-2190 nM), and most functioned as high efficacy agonists of CB1 and CB2 in a fluorescence-based membrane potential assay and a ßarr2 recruitment assay (NanoBiT®), with some compounds being partial agonists in the NanoBiT® assay. Key structure-activity relationships (SARs) were identified for CB1/CB2 binding and CB1/CB2 functional activities; (1) for a given core, affinities and potencies for tert-leucinamides (ADB-) > valinamides (AB-) ≫ phenylalaninamides (APP-); (2) for a given amino acid side-chain, affinities and potencies for indazoles > indoles ≫ 7-azaindoles. Radiobiotelemetric evaluation of ADB-BUTINACA, APP-BUTINACA and ADB-P7AICA in mice demonstrated that ADB-BUTINACA and ADB-P7AICA were cannabimimetic at 0.1 mg kg-1 and 10 mg kg-1 doses, respectively, as measured by pronounced decreases in core body temperature. APP-BUTINACA failed to elicit any hypothermic response up to the maximally tested 10 mg kg-1 dose, yielding an in vivo potency ranking of ADB-BUTINACA > ADB-P7AICA > APP-BUTINACA.

9.
Front Psychiatry ; 13: 1048836, 2022.
Article in English | MEDLINE | ID: mdl-36590635

ABSTRACT

Introduction: Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances that have been associated with multiple instances and types of toxicity. Some SCRAs appear to carry a greater toxicological burden than others, or compared to the prototypical cannabis-derived agonist Δ9-tetrahydrocannabinol (Δ9-THC), despite a common primary mechanism of action via cannabinoid 1 (CB1) receptors. "Off-target" (i.e., non-CB1 receptor) effects could underpin this differential toxicity, although there are limited data around the activity of SCRAs at such targets. Methods: A selection of 7 SCRAs (AMB-FUBINACA, XLR11, PB-22, AKB-48, AB-CHMINICA, CUMYL-PINACA, and 4F-MDMB-BUTINACA), representing several distinct chemotypes and toxicological profiles, underwent a 30 µM single-point screen against 241 G protein-coupled receptor (GPCR) targets in antagonist and agonist mode using a cellular ß-arrestin recruitment assay. Strong screening "hits" at specific GPCRs were followed up in detail using concentration-response assays with AMB-FUBINACA, a SCRA with a particularly notable history of toxicological liability. Results: The single-point screen yielded few hits in agonist mode for any compound aside from CB1 and CB2 receptors, but many hits in antagonist mode, including a range of chemokine receptors, the oxytocin receptor, and histamine receptors. Concentration-response experiments showed that AMB-FUBINACA inhibited most off-targets only at the highest 30 µM concentration, with inhibition of only a small subset of targets, including H1 histamine and α2B adrenergic receptors, at lower concentrations (≥1 µM). AMB-FUBINACA also produced concentration-dependent CB1 receptor signaling disruption at concentrations higher than 1 µM, but did not produce overt cytotoxicity beyond CP55,940 or Δ9-THC in CB1 expressing cells. Discussion: These results suggest that while some "off-targets" could possibly contribute to the SCRA toxidrome, particularly at high concentrations, CB1-mediated cellular dysfunction provides support for hypotheses concerning on-target, rather than off-target, toxicity. Further investigation of non-GPCR off-targets is warranted.

10.
PeerJ ; 7: e7733, 2019.
Article in English | MEDLINE | ID: mdl-31579608

ABSTRACT

BACKGROUND: Synthetic cannabinoids are a commonly used class of recreational drugs that can have significant adverse effects. There have been sporadic reports of co-consumption of illicit drugs with rodenticides such as warfarin and brodifacoum (BFC) over the past 20 years but recently, hundreds of people have been reported to have been poisoned with a mixture of synthetic cannabinoids and BFC. We have sought to establish whether BFC directly affects cannabinoid receptors, or their activation by the synthetic cannabinoid CP55940 or the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC). METHODS: The effects of BFC on the hyperpolarization of wild type AtT20 cells, or AtT20 cells stably expressing human CB1- or CB2- receptors, were studied using a fluorescent assay of membrane potential. The effect of BFC on CB1- and CB2-mediated inhibition of forskolin-stimulated adenylyl cyclase (AC) activation was measured using a BRET assay of cAMP levels in HEK 293 cells stably expressing human CB1 or CB2. RESULTS: BFC did not activate CB1 or CB2 receptors, or affect the hyperpolarization of wild type AtT20 cells produced by somatostatin. BFC (1 µM) did not affect the hyperpolarization of AtT20-CB1 or AtT20-CB2 cells produced by CP55940 or Δ9-THC. BFC (1 µM) did not affect the inhibition of forskolin-stimulated AC activity by CP55940 in HEK 293 cells expressing CB1 or CB2. BFC (1 µM) also failed to affect the desensitization of CB1 and CB2 signaling produced by prolonged (30 min) application of CP55940 or Δ9-THC to AtT20 cells. DISCUSSION: BFC is not a cannabinoid receptor agonist, and appeared not to affect cannabinoid receptor activation. Our data suggests there is no pharmacodynamic rationale for mixing BFC with synthetic cannabinoids; however, it does not speak to whether BFC may affect synthetic cannabinoid metabolism or biodistribution. The reasons underlying the mixing of BFC with synthetic cannabinoids are unknown, and it remains to be established whether the "contamination" was deliberate or accidental. However, the consequences for people who ingested the mixture were often serious, and sometimes fatal, but this seems unlikely to be due to BFC action at cannabinoid receptors.

11.
Front Pharmacol ; 10: 595, 2019.
Article in English | MEDLINE | ID: mdl-31191320

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) are the largest class of new psychoactive substances (NPS). New examples are detected constantly, and some are associated with a series of adverse effects, including seizures. CUMYL-4CN-BINACA (1-(4-cyanobutyl)-N-(2-phenylpropan-2-yl)indazole-3-carboxamide) is structurally related to potent, cumylamine-derived SCRAs such as 5F-CUMYL-PINACA, but is unusual due to a terminal aliphatic nitrile group not frequently encountered in SCRAs or pharmaceuticals. We report here that CUMYL-4CN-BINACA is a potent CB1 receptor agonist (K i = 2.6 nM; EC50 = 0.58 nM) that produces pro-convulsant effects in mice at a lower dose than reported for any SCRA to date (0.3 mg/kg, i.p). Hypothermic and pro-convulsant effects in mice could be reduced or blocked, respectively, by pretreatment with CB1 receptor antagonist SR141716, pointing to at least partial involvement of CB1 receptors in vivo. Pretreatment with CB2 receptor antagonist AM-630 had no effect on pro-convulsant activity. The pro-convulsant properties and potency of CUMYL-4CN-BINACA may underpin the toxicity associated with this compound in humans.

12.
Org Biomol Chem ; 17(20): 5086-5098, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31070218

ABSTRACT

Cannabinoid type 2 receptor (CB2) is up-regulated on activated microglial cells and can potentially be used as a biomarker for PET-imaging of neuroinflammation. In this study the synthesis and pharmacological evaluation of novel fluorinated pyridyl and ethyl sulfone analogues of 2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-(2-methylpentyl)-1H-benzo[d]imidazole (rac-1a) are described. In general, the ligands showed low nanomolar potency (CB2 EC50 < 10 nM) and excellent selectivity over the CB1 subtype (>10 000×). Selected ligands 1d, 1e, 1g and 3l showing high CB2 binding affinity (Ki < 10 nM) were radiolabelled with fluorine-18 from chloropyridyl and alkyl tosylate precursors with good to high isolated radioactive yields (25-44%, non-decay corrected, at the end of synthesis). CB2-specific binding of the radioligand candidates [18F]-1d and [18F]-3l was assessed on rat spleen cryosections using in vitro autoradiography. The results warrant further in vivo evaluation of the tracer candidates as prospective CB2 PET-imaging agents.

13.
Drug Test Anal ; 11(7): 976-989, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30838752

ABSTRACT

5F-PY-PICA and 5F-PY-PINACA are pyrrolidinyl 1-(5-fluoropentyl)ind (az)ole-3-carboxamides identified in 2015 as putative synthetic cannabinoid receptor agonist (SCRA) new psychoactive substances (NPS). 5F-PY-PICA, 5F-PY-PINACA, and analogs featuring variation of the 1-alkyl substituent or contraction, expansion, or scission of the pyrrolidine ring were synthesized and characterized by nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS). In competitive binding experiments against HEK293 cells expressing human cannabinoid receptor type 1 (hCB1 ) or type 2 (hCB2 ), all analogs showed minimal affinity for CB1 (pKi  < 5), although several demonstrated moderate CB2 binding (pKi 5.45-6.99). In fluorescence-based membrane potential assays using AtT20-hCB1 or -hCB2 cells, none of the compounds (at 10 µM) produced an effect >50% of the classical cannabinoid agonist CP55,940 (at 1 µM) at hCB1 , although several showed slightly higher relative efficacy at hCB2 . Expansion of the pyrrolidine ring of 5F-PY-PICA to an azepane (8) conferred the greatest hCB2 affinity (pKi 6.99) and activity (pEC50 7.54, Emax 72%) within the series. Unlike other SCRA NPS evaluated in vivo using radio biotelemetry, 5F-PY-PICA and 5F-PY-PINACA did not produce cannabimimetic effects (hypothermia, bradycardia) in mice at doses up to 10 mg/kg.


Subject(s)
Cannabinoid Receptor Agonists/chemistry , Cannabinoid Receptor Agonists/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Psychotropic Drugs/chemistry , Psychotropic Drugs/pharmacology , Animals , Cell Line , HEK293 Cells , Halogenation , Humans , Magnetic Resonance Spectroscopy , Male , Mice, Inbred C57BL , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Tandem Mass Spectrometry
14.
Drug Test Anal ; 11(2): 279-291, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30151911

ABSTRACT

Synthetic cannabinoid receptor agonists (SCRAs) are a dynamic class of new psychoactive substances (NPS), with novel chemotypes emerging each year. Following the putative detection of 5F-CUMYL-P7AICA in Australia in 2016, the scaffold-hopping SCRAs 5F-CUMYL-PICA, 5F-CUMYL-PINACA, and 5F-CUMYL-P7AICA were synthesized and characterized by nuclear magnetic resonance (NMR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-quadrupole time-of-flight-MS (LC-QTOF-MS). Since little is known of the pharmacology of 7-azaindole SCRAs like 5F-CUMYL-P7AICA, the binding affinities and functional activities of all compounds at cannabinoid type 1 and type 2 receptors (CB1 and CB2 , respectively) were assessed using tritiated radioligand competition experiments and fluorescence-based plate reader membrane potential assays. Despite CB1 binding affinities differing by over two orders of magnitude (Ki  = 2.95-174 nM), all compounds were potent and efficacious CB1 agonists (EC50  = 0.43-4.7 nM), with consistent rank order for binding and functional activity (5F-CUMYL-PINACA >5F-CUMYL-PICA >5F-CUMYL-P7AICA). Additionally, 5F-CUMYL-P7AICA was found to exert potent cannabimimetic effects in mice, inducing hypothermia (6°C, 3 mg/kg) through a CB1 -dependent mechanism.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/chemical synthesis , Cannabinoids/pharmacology , Indazoles/chemical synthesis , Indazoles/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Animals , Body Temperature/drug effects , Cell Line, Tumor , Cells, Cultured , Humans , Male , Mice , Radioligand Assay/statistics & numerical data , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism
15.
J Hypertens ; 37(1): 109-115, 2019 01.
Article in English | MEDLINE | ID: mdl-30015755

ABSTRACT

BACKGROUND: Hypertension and baroreflex dysfunction confer poorer outcomes in patients with polycystic kidney disease (PKD). METHOD: We examined whether hypothalamic paraventricular nucleus (PVN) activation or circulating vasopressin contribute to hypertension and baroreflex dysfunction in the Lewis polycystic kidney (LPK) rat. RESULTS: Bilateral PVN inhibition with muscimol reduced SBP further in urethane-anaesthetized adult LPK rats than in control Lewis rats (-43 ±â€Š4 vs. -18 ±â€Š3 mmHg; P < 0.0001, n = 14), but was not associated with a greater reduction in sympathetic nerve activity (SNA) or improvement in HR or SNA baroreflex function. Blockade of ionotropic glutamatergic input to the PVN with kynurenic acid also reduced SBP (P < 0.001), but not SNA, further in both adult and juvenile LPK rats. No differences in AMPA or NMDA receptor mRNA expression were noted. Systemic V1A receptor antagonism using OPC-21268 reduced SBP in adult LPK rats only (P < 0.001) and had no effect on the depressor response to PVN inhibition (P = 0.39). Combined peripheral V1A receptor antagonism and PVN inhibition, however, normalized SBP in adult LPK rats (122 ±â€Š11 vs. 115 ±â€Š6 mmHg; LPK vs. Lewis, P > 0.05, n = 10). CONCLUSION: Our data show that in the LPK rat model of PKD, hypertension is contributed to by increased PVN neuronal activity and, through an independent mechanism, systemic V1A receptor activation. Treatments that reduce PVN neuronal activity and/or inhibit peripheral V1A receptors may provide novel treatment strategies to ameliorate hypertension in individuals with PKD and limit overall disease progression.


Subject(s)
Hypertension , Paraventricular Hypothalamic Nucleus/metabolism , Polycystic Kidney Diseases , Vasopressins/blood , Animals , Disease Models, Animal , Hypertension/blood , Hypertension/etiology , Hypertension/metabolism , Polycystic Kidney Diseases/blood , Polycystic Kidney Diseases/complications , Polycystic Kidney Diseases/metabolism , Rats
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 258-261, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29059859

ABSTRACT

Renal denervation is a novel device based therapy promoted to reduce high blood pressure. We examined the impact of renal denervation on systolic blood pressure, renal function, and arterial stiffness in the Lewis Polycystic Kidney disease (LPK) rodent model of kidney disease. Animals were subjected to bilateral renal denervation or sham surgeries at age 6 and 12 weeks. Systolic blood pressure was monitored by tail-cuff plethysmography and renal function by urinalysis and creatinine clearance. At age 16 weeks, beat-to-beat aortic pulse wave velocity as a functional indicator of arterial stiffness was determined. Renal denervation produced an overall reduction in blood pressure in the LPK [(denervated 164±4 vs. sham-operated 180±6 mmHg, n = 6 per group, P=0.003)] and delayed, but did not prevent, the decline in renal function. Aortic pulse wave velocity was markedly elevated in the LPK compared with Lewis and was not altered by renal denervation in the LPK however a reduction was seen in the control Lewis animals. These results support the hypothesis that renal nerves contribute to secondary hypertension in conditions such as kidney disease.


Subject(s)
Vascular Stiffness , Animals , Blood Pressure , Denervation , Hypertension , Kidney , Pulse Wave Analysis
17.
Front Immunol ; 8: 994, 2017.
Article in English | MEDLINE | ID: mdl-28878770

ABSTRACT

Transplant tolerance induced in adult animals is mediated by alloantigen-specific CD4+CD25+ T cells, yet in many models, proliferation of CD4+ T cells from hosts tolerant to specific-alloantigen in vitro is not impaired. To identify changes that may diagnose tolerance, changes in the patterns of proliferation of CD4+, CD4+CD25+, and CD4+CD25- T cells from DA rats tolerant to Piebald Virol Glaxo rat strain (PVG) cardiac allografts and from naïve DA rats were examined. Proliferation of CD4+ T cells from both naïve and tolerant hosts was similar to both PVG and Lewis stimulator cells. In mixed lymphocyte culture to PVG, proliferation of naïve CD4+CD25- T cells was greater than naïve CD4+ T cells. In contrast, proliferation of CD4+CD25- T cells from tolerant hosts to specific-donor PVG was not greater than CD4+ T cells, whereas their response to Lewis and self-DA was greater than CD4+ T cells. Paradoxically, CD4+CD25+ T cells from tolerant hosts did not proliferate to PVG, but did to Lewis, whereas naïve CD4+CD25+ T cells proliferate to both PVG and Lewis but not to self-DA. CD4+CD25+ T cells from tolerant, but not naïve hosts, expressed receptors for interferon (IFN)-γ and IL-5 and these cytokines promoted their proliferation to specific-alloantigen PVG but not to Lewis or self-DA. We identified several differences in the patterns of proliferation to specific-donor alloantigen between cells from tolerant and naïve hosts. Most relevant is that CD4+CD25+ T cells from tolerant hosts failed to proliferate or suppress to specific donor in the absence of either IFN-γ or IL-5. The proliferation to third-party and self of each cell population from tolerant and naïve hosts was similar and not affected by IFN-γ or IL-5. Our findings suggest CD4+CD25+ T cells that mediate transplant tolerance depend on IFN-γ or IL-5 from alloactivated Th1 and Th2 cells.

18.
ACS Chem Neurosci ; 8(10): 2159-2167, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28792725

ABSTRACT

Synthetic cannabinoids (SC) are the largest class of new psychoactive substances (NPS), and are increasingly associated with serious adverse effects. The majority of SC NPS are 1,3-disubstituted indoles and indazoles featuring a diversity of subunits at the 1- and 3-positions. Most recently, cumyl-derived indole- and indazole-3-carboxamides have been detected by law enforcement agencies and by emergency departments. Herein we describe the synthesis, characterization, and pharmacology of SCs CUMYL-BICA, CUMYL-PICA, CUMYL-5F-PICA, CUMYL-PINACA, CUMYL-5F-PINACA, and related analogues. All cumyl-derived SCs were potent, efficacious agonists at CB1 (EC50 = 0.43-12.3 nM) and CB2 (EC50 = 11.3-122 nM) receptors in a fluorometric assay of membrane potential, with selectivity for CB1 activation (3.1-53 times over CB2). CUMYL-PICA and CUMYL-5F-PICA were evaluated in rats using biotelemetry, and induced hypothermia and bradycardia at doses of 1 mg/kg. Hypothermia was reversed by pretreatment with a CB1, but not CB2, antagonist, confirming that cumyl-derived SCs are cannabimimetic in vivo.


Subject(s)
Cannabinoids/pharmacology , Indoles/chemistry , Triazines/chemistry , Animals , Cannabinoids/chemistry , Central Nervous System Agents/pharmacology , Chromatography, Liquid/methods , Humans , Hypothermia/chemically induced , Mice , Molecular Structure , Rats , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists
19.
Transpl Immunol ; 43-44: 33-41, 2017 08.
Article in English | MEDLINE | ID: mdl-28652007

ABSTRACT

CD4+T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4+CD25+FOXP3+Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4+, especially CD4+CD25+T cells. CD4+T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4+T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4+CD25+T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4+T cells' survival in culture with specific-donor alloantigen. Tolerant CD4+T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4+T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4+CD25+T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4+CD25+T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4+CD25+T cells that mediate transplant tolerance.


Subject(s)
Graft Rejection/prevention & control , Heart Transplantation , Interleukin-5/pharmacology , Isoantigens/immunology , T-Lymphocytes, Regulatory/immunology , Transplantation Tolerance/drug effects , Allografts , Animals , Cell Survival/drug effects , Cell Survival/immunology , Graft Rejection/immunology , Graft Rejection/pathology , Interleukin-5/immunology , Rats , Rats, Inbred Lew , T-Lymphocytes, Regulatory/pathology
20.
Transpl Immunol ; 42: 24-33, 2017 06.
Article in English | MEDLINE | ID: mdl-28487237

ABSTRACT

CD4+T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4+T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4+T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4+T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4+T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4+T cells. Tolerant CD4+CD25+T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4+CD25+T cells to third-party Lewis. Tolerant CD4+CD25+T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4+CD25+T cells.


Subject(s)
Heart Transplantation , Interferon-gamma/immunology , Isoantigens/immunology , T-Lymphocytes, Regulatory/immunology , Transplantation Tolerance , Allografts , Animals , Cell Survival , Rats , Rats, Inbred Lew , Receptors, Interferon/immunology , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL