Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Infect Dis ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38677300

ABSTRACT

BACKGROUND: Effective antiviral drugs prevent hospitalisation and death from COVID-19. Antiviral efficacy can be efficiently assessed in vivo by measuring rates of SARS-CoV-2 clearance estimated from serial viral genome densities quantitated in nasopharyngeal or oropharyngeal swab eluates. We conducted an individual patient data meta-analysis of unblinded arms in the PLATCOV platform trial to characterise changes in viral clearance kinetics and infer optimal design and interpretation of antiviral pharmacometric evaluations. METHODS: Serial viral density data were analysed from symptomatic, previously healthy, adult patients (within 4 days of symptom onset) enrolled in a large multicentre, randomised, adaptive, pharmacodynamic, platform trial (PLATCOV) comparing antiviral interventions for SARS-CoV-2. Viral clearance rates over 1 week were estimated under a hierarchical Bayesian linear model with B-splines used to characterise temporal changes in enrolment viral densities and clearance rates. Bootstrap re-sampling was used to assess the optimal duration of follow-up for pharmacometric assessment, where optimal was defined as maximising the expected Z score when comparing effective antivirals with no treatment. PLATCOV is registered at ClinicalTrials.gov, NCT05041907. FINDINGS: Between Sept 29, 2021, and Oct 20, 2023, 1262 patients were randomly assigned in the PLATCOV trial. Unblinded data were available from 800 patients (who provided 16 818 oropharyngeal viral quantitative PCR [qPCR] measurements), of whom 504 (63%) were female. 783 (98%) patients had received at least one vaccine dose and 703 (88%) were fully vaccinated. SARS-CoV-2 viral clearance was biphasic (bi-exponential). The first phase (α) was accelerated by effective interventions. For all the effective interventions studied, maximum discriminative power (maximum expected Z score) was obtained when evaluating serial data from the first 5 days after enrolment. Over the 2-year period studied, median viral clearance half-lives estimated over 7 days shortened from 16·6 h (IQR 15·3 to 18·2) in September, 2021, to 9·2 h (8·0 to 10·6) in October, 2023, in patients receiving no antiviral drugs, equivalent to a relative reduction of 44% (95% credible interval [CrI] 19 to 64). A parallel reduction in viral clearance half-lives over time was observed in patients receiving antiviral drugs. For example, in the 158 patients assigned to ritonavir-boosted nirmatrelvir (3380 qPCR measurements), the median viral clearance half-life reduced from 6·4 h (IQR 5·7 to 7·3) in June, 2022, to 4·8 h (4·2 to 5·5) in October, 2023, a relative reduction of 26% (95% CrI -4 to 42). INTERPRETATION: SARS-CoV-2 viral clearance kinetics in symptomatic, vaccinated individuals accelerated substantially over 2 years of the pandemic, necessitating a change to how new SARS-CoV-2 antivirals are compared (ie, shortening the period of pharmacodynamic assessment). As of writing (October, 2023), antiviral efficacy in COVID-19 can be efficiently assessed in vivo using serial qPCRs from duplicate oropharyngeal swab eluates taken daily for 5 days after drug administration. FUNDING: Wellcome Trust.

2.
J Antimicrob Chemother ; 79(5): 935-945, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38385479

ABSTRACT

BACKGROUND: Effective antiviral drugs accelerate viral clearance in acute COVID-19 infections; the relationship between accelerating viral clearance and reducing severe clinical outcomes is unclear. METHODS: A systematic review was conducted of randomized controlled trials (RCTs) of antiviral therapies in early symptomatic COVID-19, where viral clearance data were available. Treatment benefit was defined clinically as the relative risk of hospitalization/death during follow-up (≥14 days), and virologically as the SARS-CoV-2 viral clearance rate ratio (VCRR). The VCRR is the ratio of viral clearance rates between the intervention and control arms. The relationship between the clinical and virological treatment effects was assessed by mixed-effects meta-regression. RESULTS: From 57 potentially eligible RCTs, VCRRs were derived for 44 (52 384 participants); 32 had ≥1 clinical endpoint in each arm. Overall, 9.7% (R2) of the variation in clinical benefit was explained by variation in VCRRs with an estimated linear coefficient of -0.92 (95% CI: -1.99 to 0.13; P = 0.08). However, this estimate was highly sensitive to the inclusion of the recent very large PANORAMIC trial. Omitting this outlier, half the variation in clinical benefit (R2 = 50.4%) was explained by variation in VCRRs [slope -1.47 (95% CI -2.43 to -0.51); P = 0.003], i.e. higher VCRRs were associated with an increased clinical benefit. CONCLUSION: Methods of determining viral clearance in COVID-19 studies and the relationship to clinical outcomes vary greatly. As prohibitively large sample sizes are now required to show clinical treatment benefit in antiviral therapeutic assessments, viral clearance is a reasonable surrogate endpoint.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Disease Progression , SARS-CoV-2 , Humans , COVID-19/virology , Antiviral Agents/therapeutic use , SARS-CoV-2/drug effects , Randomized Controlled Trials as Topic , Viral Load/drug effects , Treatment Outcome , Hospitalization
3.
BMC Infect Dis ; 24(1): 89, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225598

ABSTRACT

In early symptomatic COVID-19 treatment, high dose oral favipiravir did not accelerate viral clearance. BACKGROUND: Favipiravir, an anti-influenza drug, has in vitro antiviral activity against SARS-CoV-2. Clinical trial evidence to date is inconclusive. Favipiravir has been recommended for the treatment of COVID-19 in some countries. METHODS: In a multicentre open-label, randomised, controlled, adaptive platform trial, low-risk adult patients with early symptomatic COVID-19 were randomised to one of ten treatment arms including high dose oral favipiravir (3.6g on day 0 followed by 1.6g daily to complete 7 days treatment) or no study drug. The primary outcome was the rate of viral clearance (derived under a linear mixed-effects model from the daily log10 viral densities in standardised duplicate oropharyngeal swab eluates taken daily over 8 days [18 swabs per patient]), assessed in a modified intention-to-treat population (mITT). The safety population included all patients who received at least one dose of the allocated intervention. This ongoing adaptive platform trial was registered at ClinicalTrials.gov (NCT05041907) on 13/09/2021. RESULTS: In the final analysis, the mITT population contained data from 114 patients randomised to favipiravir and 126 patients randomised concurrently to no study drug. Under the linear mixed-effects model fitted to all oropharyngeal viral density estimates in the first 8 days from randomisation (4,318 swabs), there was no difference in the rate of viral clearance between patients given favipiravir and patients receiving no study drug; a -1% (95% credible interval: -14 to 14%) difference. High dose favipiravir was well-tolerated. INTERPRETATION: Favipiravir does not accelerate viral clearance in early symptomatic COVID-19. The viral clearance rate estimated from quantitative measurements of oropharyngeal eluate viral densities assesses the antiviral efficacy of drugs in vivo with comparatively few studied patients.


Subject(s)
Amides , COVID-19 , Pyrazines , Adult , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , Treatment Outcome , Antiviral Agents/therapeutic use
4.
Lancet Infect Dis ; 24(1): 36-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37778363

ABSTRACT

BACKGROUND: Molnupiravir and ritonavir-boosted nirmatrelvir are the two leading oral COVID-19 antiviral treatments, but their antiviral activities in patients have not been compared directly. The aim of this ongoing platform trial is to compare different antiviral treatments using the rate of viral clearance as the measure of antiviral effect. METHODS: PLATCOV is an open-label, multicentre, phase 2, randomised, controlled, adaptive pharmacometric platform trial running in Thailand, Brazil, Pakistan, and Laos. The component of the trial reported here was conducted in the Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. We recruited low-risk adult patients aged 18-50 years with early symptomatic COVID-19 (<4 days of symptoms). Eligible patients were randomly assigned using block randomisation via a centralised web app to one of seven treatment groups: molnupiravir, ritonavir-boosted nirmatrelvir, casirivimab-imdevimab, tixagevimab-cilgavimab, favipiravir, fluoxetine, or no study drug. The no study drug group comprised a minimum proportion of 20% of patients at all times, with uniform randomisation ratios applied across the active treatment groups. Results for the concurrently randomised molnupiravir, ritonavir-boosted nirmatrelvir, and no study drug groups are reported here. The primary endpoint was the rate of oropharyngeal viral clearance assessed in a modified intention-to-treat population, defined as patients with more than 2 days of follow-up. Safety was assessed in all participants who took at least one dose of the medication. The viral clearance rate was derived under a Bayesian hierarchical linear model fitted to the log10 viral densities in standardised duplicate oropharyngeal swab eluates taken daily over 1 week (18 measurements). Treatment groups with a probability of more than 0·9 that viral clearance was accelerated by more than 20% compared with no drug entered a non-inferiority comparison (with a 10% non-inferiority margin) compared with the platform's current most effective drug. This ongoing trial is registered at ClinicalTrials.gov, NCT05041907. FINDINGS: Between June 6, 2022, and Feb 23, 2023, 209 patients in Thailand were enrolled and concurrently randomly assigned to molnupiravir (n=65), ritonavir-boosted nirmatrelvir (n=59), or no study drug (n=85). 129 (62%) of the patients were female and 80 (38%) were male. Relative to the no study drug group, the rates of viral clearance were 37% (95% credible interval 16-65) faster with molnupiravir and 84% (54-119) faster with ritonavir-boosted nirmatrelvir. In the non-inferiority comparison, viral clearance was 25% (10-38) slower with molnupiravir than ritonavir-boosted nirmatrelvir. Molnupiravir was removed from the study platform when it reached the prespecified inferiority margin of 10% compared with ritonavir-boosted nirmatrelvir. Median estimated viral clearance half-lives were 8·5 h (IQR 6·7-10·1) with ritonavir-boosted nirmatrelvir, 11·6 h (8·6-15·4) with molnupiravir, and 15·5 h (11·9-21·2) with no study drug. Viral rebound occurred more frequently following nirmatrelvir (six [10%] of 58) compared with the no study drug (one [1%] of 84; p=0·018) or the molnupiravir (one [2%] of 65; p=0·051) groups. Persistent infections following molnupiravir had more viral mutations (three of nine patients had an increased number of single nucleotide polymorphisms in samples collected at 7 or more days compared with those at baseline) than after nirmatrelvir (zero of three) or no study drug (zero of 19). There were no adverse events of grade 3 or worse, or serious adverse events in any of the reported treatment groups. INTERPRETATION: Both molnupiravir and ritonavir-boosted nirmatrelvir accelerate oropharyngeal SARS-CoV-2 viral clearance in patients with COVID-19, but the antiviral effect of ritonavir-boosted nirmatrelvir was substantially greater. Measurement of oropharyngeal viral clearance rates provides a rapid and well tolerated approach to the assessment and comparison of antiviral drugs in patients with COVID-19. It should be evaluated in other acute viral respiratory infections. FUNDING: Wellcome Trust through the COVID-19 Therapeutics Accelerator.


Subject(s)
Anti-HIV Agents , COVID-19 , HIV Infections , HIV-1 , Adult , Humans , Male , Female , Ritonavir , HIV Infections/drug therapy , Bayes Theorem , Treatment Outcome , SARS-CoV-2 , Thailand , COVID-19 Drug Treatment , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology
6.
J Infect Dis ; 228(10): 1318-1325, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37470445

ABSTRACT

BACKGROUND: Uncertainty over the therapeutic benefit of parenteral remdesivir in coronavirus disease 2019 (COVID-19) has resulted in varying treatment guidelines. METHODS: In a multicenter open-label, controlled, adaptive, pharmacometric platform trial, low-risk adult patients with early symptomatic COVID-19 were randomized to 1 of 8 treatment arms including intravenous remdesivir (200 mg followed by 100 mg daily for 5 days) or no study drug. The primary outcome was the rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) clearance (estimated under a linear model fit to the daily log10 viral densities, days 0-7) in standardized duplicate oropharyngeal swab eluates, in a modified intention-to-treat population. This ongoing adaptive trial is registered at ClinicalTrials.gov (NCT05041907). RESULTS: The 2 study arms enrolled 131 patients (remdesivir n = 67, no study drug n = 64) and estimated viral clearance rates from a median of 18 swab samples per patient (a total of 2356 quantitative polymerase chain reactions). Under the linear model, compared with the contemporaneous control arm (no study drug), remdesivir accelerated mean estimated viral clearance by 42% (95% credible interval, 18%-73%). CONCLUSIONS: Parenteral remdesivir accelerates viral clearance in early symptomatic COVID-19. Pharmacometric assessment of therapeutics using the method described can determine in vivo clinical antiviral efficacy rapidly and efficiently.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , COVID-19 Drug Treatment , Treatment Outcome , Antiviral Agents
7.
Elife ; 122023 02 21.
Article in English | MEDLINE | ID: mdl-36803992

ABSTRACT

Background: There is no generally accepted methodology for in vivo assessment of antiviral activity in SARS-CoV-2 infections. Ivermectin has been recommended widely as a treatment of COVID-19, but whether it has clinically significant antiviral activity in vivo is uncertain. Methods: In a multicentre open label, randomized, controlled adaptive platform trial, adult patients with early symptomatic COVID-19 were randomized to one of six treatment arms including high-dose oral ivermectin (600 µg/kg daily for 7 days), the monoclonal antibodies casirivimab and imdevimab (600 mg/600 mg), and no study drug. The primary outcome was the comparison of viral clearance rates in the modified intention-to-treat population. This was derived from daily log10 viral densities in standardized duplicate oropharyngeal swab eluates. This ongoing trial is registered at https://clinicaltrials.gov/ (NCT05041907). Results: Randomization to the ivermectin arm was stopped after enrolling 205 patients into all arms, as the prespecified futility threshold was reached. Following ivermectin, the mean estimated rate of SARS-CoV-2 viral clearance was 9.1% slower (95% confidence interval [CI] -27.2% to +11.8%; n=45) than in the no drug arm (n=41), whereas in a preliminary analysis of the casirivimab/imdevimab arm it was 52.3% faster (95% CI +7.0% to +115.1%; n=10 (Delta variant) vs. n=41). Conclusions: High-dose ivermectin did not have measurable antiviral activity in early symptomatic COVID-19. Pharmacometric evaluation of viral clearance rate from frequent serial oropharyngeal qPCR viral density estimates is a highly efficient and well-tolerated method of assessing SARS-CoV-2 antiviral therapeutics in vitro. Funding: 'Finding treatments for COVID-19: A phase 2 multi-centre adaptive platform trial to assess antiviral pharmacodynamics in early symptomatic COVID-19 (PLAT-COV)' is supported by the Wellcome Trust Grant ref: 223195/Z/21/Z through the COVID-19 Therapeutics Accelerator. Clinical trial number: NCT05041907.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Ivermectin/therapeutic use , Antiviral Agents/therapeutic use , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...