ABSTRACT
Spondias dulcis Parkinson have been used in traditional medicine in Asia, Oceania, and South America, for different diseases conditions and as a functional food. The scientific literature described as different potential pharmacology such as antioxidant, anti-inflammatory, antimicrobial, thrombolytic and enzymatic inhibitor. This study aimed to: (1) establish the pharmacological activity in intestinal motility in vivo and antioxidant activity in vitro; (2) perform the acute toxicology test in mouse; (3) characterize the phytochemical profile based on counter-current chromatography (CCC) and NMR analysis. The results revealed a laxative effect of S. dulcis extract and a high antioxidant activity (IC50 = 5.10 for DPPH assay and 14.14 for hydrogen peroxide scavenging test). No side effects were observed in the oral acute toxicity test for a dose up to 2000 mg/kg. The chemical profile was identified by CCC and NMR, and the comparison of the data obtained with previous literature revealed the presence of the flavonoid rutin (Quercetin-3-O-rutinoside) in the extract.
Subject(s)
Anacardiaceae , Parkinson Disease , Mice , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anacardiaceae/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysisABSTRACT
Prance once defined Ethnobotany as an interdisciplinary Science combining Anthropology and Botany [...].
ABSTRACT
The ethanol extract (EE) prepared from the leaves of Tibouchina granulosa, and its fraction in ethyl acetate (fEA) were evaluated concerning their capacity to reduce inflammation in different experimental models. fEA was also studied concerning its chemical constituents. EE and fEA were assayed for their anti-inflammatory potential, using formalin-induced licking behavior and carrageenan-induced inflammation into the subcutaneous air pouch (SAP) models. Reduction in polymorphonuclear cells (PMN) activation was performed in freshly isolated PMN. Chromatographic analysis of fEA was performed by HPLC-DAD. Hispiduloside was isolated as the main constituent in fEA, and its quantity was estimated to be 39.3% in fEA. EE (30 mg/kg) significantly reduced the second phase of formalin-induced licking. fEA demonstrated a reduction in leukocyte migration into the SAP. EE and fEA drastically reduced cytokines (TNF-α, IL-1ß, and IFN-γ), nitric oxide (NO) production, in vitro PMN migration induced by C5a and IL-8, and TNF-α and IL-1ß gene expression. Taken together, our data indicate that either ethanol extract or its fEA fraction from leaves of T. granulosa present an anti-inflammatory effect, contributing to the pharmacological and chemical knowledge of this species and confirming the rationale behind its traditional use.
ABSTRACT
Helicobacter pylori is the most common cause of gastritis and peptic ulcers, and the number of resistant strains to multiple conventional antimicrobial agents has been increasing in different parts of the world. Several studies have shown that some essential oils (EO) have bioactive compounds, which can be attributed to antimicrobial activity. Therefore, EOs have been proposed as a natural alternative to antibiotics, or for use in combination with conventional treatment for H. pylori infection. Campomanesia lineatifolia is an edible species found in the Brazilian forests, and their leaves are traditionally used for the treatment of gastrointestinal disorders. Anti-inflammatory, gastroprotective, and antioxidant properties are attributed to C. lineatifolia leaf extracts; however, studies related to the chemical constituents of the essential oil and anti-H. pylori activity is not described. This work aims to identify the chemical composition of the EO from C. lineatifolia leaves and evaluate the anti-H. pylori activity. The EO was obtained by hydrodistillation from C. lineatifolia leaves and characterized by gas chromatography-mass spectrometry analyses. To assess the in vitro anti-H. pylori activity of the C. lineatifolia leaf's EO (6 µL/mL-25 µL/mL), we performed broth microdilution assays by using type cultures (ATCC 49503, NCTC 11638, both clarithromycin-sensitive) and clinical isolate strains (SSR359, clarithromycin-sensitive, and SSR366, clarithromycin-resistant). A total of eight new compounds were identified from the EO (3-hexen-1-ol (46.15%), α-cadinol (20.35%), 1,1-diethoxyethane (13.08%), 2,3-dicyano-7,7-dimethyl-5,6-benzonorbornadiene (10.78%), aromadendrene 2 (3.0%), [3-S-(3α, 3aα, 6α, 8aα)]-4,5,6,7,8,8a-hexahydro-3,7,7-trimethyl-8-methylene-3H-3a,6-methanoazulene (2.99%), α-bisabolol (0.94%), and ß-curcumene (0.8%)), corresponding to 98.09% of the total oil composition. The EO inhibited the growth of all H. pylori strains tested (MIC 6 µL/mL). To our knowledge, the current study investigates the relation between the chemical composition and the anti-H. pylori activity of the C. lineatifolia EO for the first time. Our findings show the potential use of the C. lineatifolia leaf EO against sensitive and resistant clarithromycin H. pylori strains and suggest that this antimicrobial activity could be related to its ethnopharmacological use.
ABSTRACT
BACKGROUND: Current recommendations for the self-management of SARS-Cov-2 disease (COVID-19) include self-isolation, rest, hydration, and the use of NSAID in case of high fever only. It is expected that many patients will add other symptomatic/adjuvant treatments, such as herbal medicines. AIMS: To provide a benefits/risks assessment of selected herbal medicines traditionally indicated for "respiratory diseases" within the current frame of the COVID-19 pandemic as an adjuvant treatment. METHOD: The plant selection was primarily based on species listed by the WHO and EMA, but some other herbal remedies were considered due to their widespread use in respiratory conditions. Preclinical and clinical data on their efficacy and safety were collected from authoritative sources. The target population were adults with early and mild flu symptoms without underlying conditions. These were evaluated according to a modified PrOACT-URL method with paracetamol, ibuprofen, and codeine as reference drugs. The benefits/risks balance of the treatments was classified as positive, promising, negative, and unknown. RESULTS: A total of 39 herbal medicines were identified as very likely to appeal to the COVID-19 patient. According to our method, the benefits/risks assessment of the herbal medicines was found to be positive in 5 cases (Althaea officinalis, Commiphora molmol, Glycyrrhiza glabra, Hedera helix, and Sambucus nigra), promising in 12 cases (Allium sativum, Andrographis paniculata, Echinacea angustifolia, Echinacea purpurea, Eucalyptus globulus essential oil, Justicia pectoralis, Magnolia officinalis, Mikania glomerata, Pelargonium sidoides, Pimpinella anisum, Salix sp, Zingiber officinale), and unknown for the rest. On the same grounds, only ibuprofen resulted promising, but we could not find compelling evidence to endorse the use of paracetamol and/or codeine. CONCLUSIONS: Our work suggests that several herbal medicines have safety margins superior to those of reference drugs and enough levels of evidence to start a clinical discussion about their potential use as adjuvants in the treatment of early/mild common flu in otherwise healthy adults within the context of COVID-19. While these herbal medicines will not cure or prevent the flu, they may both improve general patient well-being and offer them an opportunity to personalize the therapeutic approaches.
ABSTRACT
The aim of this study was to evaluate the in vitro activity of Syzygium aromaticum essential oil (SAEO) and its main constituent eugenol (EG) against adult fleas and their action in the maturation of eggs into adults of Ctenocephalides felis felis. In order to evaluate the pulicidal activity, 10 adult fleas were exposed to a filter paper impregnated with SAEO and EG at increasing concentrations of 0.047; 0.094; 0.188; 0.375; 0.750; 1.50; 3.00; 6.00; 12.00 and 24.00 µg cm-2. Flea mortality was evaluated 24 and 48 h after exposure. In order to evaluate the inhibition of the maturation of eggs into adults, 10 eggs were exposed to filter paper impregnated with SAEO and EG at the same concentrations used in the pulicidal test, and the evaluation was performed 30 days after incubation. Untreated repetitions were maintained in both studies (control group). The lethal concentration 50 (LC50) of pulicidal activity to SAEO was 5.70 µg cm-2 in 24 h and 3.91 µg cm-2 in 48 h. The LC90 was 16.10 µg cm-2 and 15.80 µg cm-2 in 24 and 48 h, respectively. The LC50 of inhibition of the maturation of eggs into adults was 0.30 µg cm-2 and the LC90 3.44 µg cm-2. The LC50 of pulicidal activity to EG was 2.40 µg cm-2 in 24 h and 1.40 µg cm-2 in 48 h; the LC90 was 8.10 µg cm-2 and 3.70 µg cm-2 in 24 h and 48 h, respectively. The LC50 of inhibition of the maturation of eggs into adults was 0.10 µg cm-2 and the LC90 0.68 µg cm-2. Based on the results obtained, it is possible to conclude that the both SAEO and EG have in vitro pulicidal activity as well as acting as inhibitors of the maturation of eggs into adults of the flea C. felis felis.
Subject(s)
Ctenocephalides , Eugenol , Insect Control , Insecticides , Oils, Volatile , Syzygium/chemistry , Animals , Ctenocephalides/drug effects , Ctenocephalides/growth & development , Female , MaleABSTRACT
Essential oils (EOs) are considered a new class of ecological products aimed at the control of insects for industrial and domestic use; however, there still is a lack of studies involving the control of fleas. Ctenocephalides felis felis, the most observed parasite in dogs and cats, is associated with several diseases. The aim of this study was to evaluate the in vitro activity, the establishment of LC50 and toxicity of EOs from Alpinia zerumbet (Pers.) B. L. Burtt & R. M. Sm, Cinnamomum spp., Laurus nobilis L., Mentha spicata L., Ocimum gratissimum L. and Cymbopogon nardus (L.) Rendle against immature stages and adults of C. felis felis. Bioassay results suggest that the method of evaluation was able to perform a pre-screening of the activity of several EOs, including the discriminatory evaluation of flea stages by their LC50. Ocimum gratissimum EO was the most effective in the in vitro assays against all flea stages, presenting adulticide (LC50 = 5.85 µg cm-2), ovicidal (LC50 = 1.79 µg cm-2) and larvicidal (LC50 = 1.21 µg cm-2) mortality at low doses. It also presented an excellent profile in a toxicological eukaryotic model. These findings may support studies involving the development of non-toxic products for the control of fleas in dogs and cats.
Subject(s)
Ctenocephalides , Insect Control , Insecticides , Oils, Volatile , Alpinia/chemistry , Animals , Cinnamomum/chemistry , Ctenocephalides/growth & development , Cymbopogon/chemistry , In Vitro Techniques , Larva/growth & development , Laurus/chemistry , Mentha spicata/chemistry , Ocimum/chemistry , Ovum/growth & developmentABSTRACT
Infusions of roots of Siolmatra brasiliensis (Cogn.) Baill, ("taiuiá", "cipó-tauá") are used for toothache pain and ulcers. We aimed to study the antinociceptive effects and identify the possible mechanism of action of this plant and its isolated substances (cayaponoside A1, cayaponoside B4, cayaponoside D, and siolmatroside I). Hydroethanol extract (HE), ethyl acetate fraction (EtOAc), and isolated saponins were evaluated in chemical and thermal models of pain in mice. Animals were orally pretreated and evaluated in the capsaicin- or glutamate-induced licking and in the hot plate tests. The antinociceptive mechanism of action was evaluated using the hot plate test with the following pretreatments: Atropine (cholinergic antagonist), naloxone (opioid antagonist), or L-NAME (nitric oxide synthase inhibitor). All extracts and isolated saponins increased the area under the curve in the hot plate test. Tested substances induced a higher effect than the morphine-treated group. Our data suggest that stems of S. brasiliensis and their isolated substances present antinociceptive effects. Cholinergic and opioidergic pathways seem to be involved in their mechanism of action. Taken together our data corroborate the traditional use of the plant and expands the information regarding its use.
Subject(s)
Analgesics/pharmacology , Cucurbitaceae/chemistry , Plant Extracts/pharmacology , Saponins/pharmacology , Analgesics/administration & dosage , Analgesics/chemistry , Animals , Disease Models, Animal , Liquid-Liquid Extraction , Mice , Pain/chemically induced , Pain/drug therapy , Pain Management , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Saponins/administration & dosage , Saponins/chemistry , Saponins/isolation & purification , SolventsABSTRACT
The in silico evaluation for the three previously synthesized compounds (Methyl (MMA), propyl (PMA) and isopropyl (IMA) N-methylanthranilate), MMA and IMA originally found in the leaf essential oil of Choisya ternata, provided a very good confirmation for the in vivo pharmacological results obtained with such compounds for a number of pharmacological targets. This manuscript dealt with their assessment in six pharmacological targets to understanding anti-inflammatory, antinociceptive, anxiolytic, antidepressant and anti-allergic activities using docking molecular as well as their pharmacokinetics and toxicological parameters prediction. The compound IMA seems to be the best one when all the combined parameters are put together. Interestingly this compound presented the best in vivo profile in previous studies by the group. Derivatives of the three original molecules were proposed. Overall the second modification (5-[2-(methoxycarbonyl)anilino]pentanoic acid, 5-[2-(propoxycarbonyl)anilino]pentanoic acid and 5-(2-{[(propan-2-yl)oxy]carbonyl}anilino)pentanoic acid) of all three original molecules was the one that achieved highest score in molecular docking and a better combination of the other parameters. Further research as in the obtaining of such derivatives via synthesis and their in vivo testing to confirm their higher pharmacological potential is currently on the way.
Subject(s)
ortho-Aminobenzoates/pharmacokinetics , ortho-Aminobenzoates/toxicity , Animals , Binding Sites , Humans , Molecular Docking Simulation , Protein Binding , Proteins/chemistry , Proteins/metabolism , Rats , Sheep , ortho-Aminobenzoates/chemical synthesis , ortho-Aminobenzoates/metabolismABSTRACT
Copaiba oleoresin (CPO), obtained from Copaifera landgroffii, is described as active to a large number of diseases and more recently in the endometriosis treatment. In this work, poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing CPO were obtained using the design of experiments (DOE) as a tool to optimize the production process. The nanoparticles optimized by means of DOE presented an activity in relation to the cellular viability of endometrial cells. The DOE showed that higher amounts of CPO combined with higher surfactant concentrations resulted in better encapsulation efficiency and size distribution along with good stability after freeze drying. The encapsulation efficiency was over 80% for all produced nanoparticles, which also presented sizes below 300 nm and spherical shape. A decrease in viability of endometrial stromal cells from ectopic endometrium of patients with endometriosis and from eutopic endometriotic lesions was demonstrated after 48 h of incubation with the CPO nanoparticles. The nanoparticles without CPO were not able to alter the cell viability of the same cells, indicating that this material was not cytotoxic to the tested cells and suggesting that the effect was specific to CPO. The results indicate that the use of CPO nanoparticles may represent a promising alternative for the treatment of endometriosis.
Subject(s)
Drug Carriers/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Plant Preparations/administration & dosage , Polyglycolic Acid/chemistry , Cell Survival/drug effects , Cells, Cultured , Endometriosis/drug therapy , Fabaceae/chemistry , Female , Freeze Drying , Humans , Particle Size , Plant Preparations/chemistry , Plant Preparations/pharmacology , Polylactic Acid-Polyglycolic Acid CopolymerABSTRACT
Abstract Herba Cistanche (Cistanche species) in Traditional Chinese Medicine is used for the treatment of several diseases and symptoms, to include pain. The objective of this study was to evaluate the antinociceptive effect of the hydroethanol extract of Cistanche salsa (C.A.Mey.) Beck, Orobanchaceae, stolons in animal models of pain. Chemical composition of Herba Cistanche was analyzed by HPLC-UV. Mice Swiss Webster (25-30 g, n = 6) were orally pre-treated with Herba Cistanche (10, 30 or 100 mg/kg) and evaluated in the formalin test and in the capsaicin- or glutamate-induced licking response. Kazakh Herba Cistanche is composed mainly by phenylpropanoid glycosides, from which echinacoside, acteoside and tubuloside B are the main constituents. When Herba Cistanche was administered to mice it had an effect in both phases of the formalin test (77% activity at 30 mg/kg for phase 1 and 62% activity at 100 mg/kg for phase 2) suggesting analgesic and anti-inflammatory properties. Kazakh Herba Cistanche was able to reduce the animals licking time after injection of glutamate (81% reduction at 30 mg/kg) and capsaicin (81% reduction at 100 mg/kg). We conclude that phenolics present in the hydroethanol extract of C. salsa could be responsible for its pharmacological profile. In order to source a good quality raw material for Traditional Chinese Medicine we recommended this Kazakh species to be standardized using echinacoside and acteoside as markers.
ABSTRACT
Abstract Choisya ternata Kunth, C. ternata var. sundance Kunth and the hybrid Choisya 'Aztec-Pearl' are three related species belonging to the Rutaceae family. Ethanol extracts were prepared from the leaves of these three species and evaluated in relation to their antioxidant activity using in vitro and ex vivo models. The ethanol extracts belonging to the three species produced a very high antioxidant profile as evidenced by the DPPH radical scavenging activity, the determination of total phenolics and flavonoid equivalent. The generation of reactive species of oxygen in leukocytes stimulated with LPS was dramatically reduced when the three ethanol extracts were used. The alkaloids anhydroevoxine and choisyine were isolated from the ethanol extract of C. ternata using HEMWat (4:6:5:5) as the solvent system by means of high-speed countercurrent chromatography. This was the first time quinoline alkaloids were isolated from this species using HSCCC. These compounds were also assayed for their capacity to inhibit the generation of ROS in leukocytes stimulated by LPS and the results also suggested that they are reactive oxygenase inhibitors.
ABSTRACT
OBJECTIVES: Tibouchina granulosa, popularly known as 'quaresmeira', belong to a genus widely used in the traditional medicine as infusions from their leaves. Other species of Tibouchina are used as antibacterial, antioxidant or antileishmanial. In this work, our objectives were to investigate the biological effects of T. granulosa in models of acute inflammation. METHODS: Chemical analysis showed the presence of proanthocyanidins and flavonoids. Infusions from leaves of T. granulosa (1, 3, 10, 30 or 100 mg/kg) were orally administered to mice, and the anti-inflammatory effects were evaluated by the formalin-induced licking response, inhibition of carrageenan-induced cell migration into subcutaneous air pouch (SAP) and inhibition of inflammatory mediator production in inflammatory exudate collected from SAP. KEY FINDINGS: Our data indicate that tested doses of T. granulosa infusion reduced cell migration, protein extravasated to SAP and cytokine production (i.e. TNF-α and IL-10). All doses also inhibited the first and second phase of formalin-induced licking response. CONCLUSIONS: Taken together, our results indicate that leaves of T. granulosa present anti-inflammatory effect and can be useful in the preparation of new phytomedicines.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Melastomataceae/chemistry , Plant Extracts/pharmacology , Animals , Carrageenan/pharmacology , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-10/metabolism , Male , Medicine, Traditional/methods , Mice , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Phytotherapy/methods , Plant Leaves/chemistry , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Choisya 'Aztec-Pearl', a hybrid of Choisya ternata and Choisya dumosa var. arizonica, had the antinociceptive activity in the ethanol extract (EECA) of its leaves evaluated. Two quinoline alkaloids, anhydroevoxine (A) and choisyine (C), isolated from these leaves were also tested. The results obtained pointed out to a very high antinociceptive activity measured by the hot plate model for EECA (at doses of 10, 30 and 100 mg/kg) as well as for A and C (at doses of 1, 3 and 10 mg/kg). The magnitude of the activity was two-fold higher than the one observed for the morphine treated animals for the higher doses of extracts/compounds (30, 100 mg/kg and 3, 10 mg/kg respectively). The mechanism of action for this activity was also investigated and it seems that for EECA as well as A and C, the opiate system plays an important role. Results have also shown that the nitric oxide (NO) system also play a pivotal role in the case of EECA and A while for C it seems that the cholinergic system have some involvement. The acute toxicity was evaluated for EECA with results showing no important toxic effect.
Subject(s)
Alkaloids/isolation & purification , Analgesics/pharmacology , Plant Extracts/pharmacology , Quinolines/isolation & purification , Rutaceae/chemistry , Alkaloids/adverse effects , Alkaloids/pharmacology , Analgesics/adverse effects , Animals , Male , Mice , Plant Extracts/adverse effects , Quinolines/adverse effects , Quinolines/pharmacologyABSTRACT
Zanthoxylum piperitum DC. (ZP) is a traditional medicinal plant used mainly in countries from Asia such as Japan. This study aimed to investigate the antinociceptive effect of ZP essential oil (ZPEO). The major component present in the essential oil was beta-phellandrene (29.39%). Its antinociceptive activity was tested through animal models (formalin-, capsaicin-, and glutamate-induced paw licking and hot plate). The anti-inflammatory effect was evaluated through the carrageenan-induced leukocyte migration into the subcutaneous air pouch (SAP), with measurement of cytokines. The results showed antinociceptive effect for ZPEO for the first phase of the formalin-induced licking, glutamate, and hot plate tests. However, ZPEO had no effect on reducing paw licking induced by capsaicin. Finally, ZPEO had no effect against inflammation induced by carrageenan.
ABSTRACT
Pereskia bleo (Kunth) DC. (Cactaceae) is a plant commonly used in popular medicine in Malaysia. In this work, we evaluate the antinociceptive effect of P. bleo leaf extracts and isolated compounds in central antinociceptive model. Ethanol extract (E), hexane (H), ethyl acetate (EA), or butanol (B) fractions (30, 50, or 100 mg/kg, p.o.), sitosterol (from hexane) and vitexin (from ethyl acetate), were administered to mice. Antinociceptive effect was evaluated in the hot plate and capsaicin- or glutamate-induced licking models. Morphine (1 mg/kg, p.o.) was used as reference drug. Naloxone (1 mg/kg, i.p.), atropine (1 mg/kg, i.p.), and L-nitro arginine methyl ester (L-NAME, 3 mg/kg, i.p.) were administered 30 min earlier (100 mg/kg, p.o.) in order to evaluate the mechanism of the antinociceptive action. Higher dose of B developed an effect significantly superior to morphine-treated group. Naloxone prevented the antinociceptive effect of all fractions. L-NAME demonstrated effect against E, EA, and B. In all fractions, sitosterol and vitexin reduced the licking time after capsaicin injection. Glutamate-induced licking response was blocked by H, EA, and B. Our results indicate that Pereskia bleo fractions, sitosterol and vitexin, possessed a central antinociceptive effect. Part of this effect is mediated by opioid receptors and nitrergic pathway.
ABSTRACT
Choisya ternata Kunth (Rutaceae) is native to North America where it is popularly known as "Mexican orange". In this study, the anti-inflammatory effects of the essential oil (EO) obtained from the leaves of C. ternata, one of its minor components (ternanthranin-ISOAN) and its two synthetic analogues (methyl and propyl N-methylanthranilate--MAN and PAN) were evaluated. Mice pretreated with the EO (EO) obtained from C. ternata leaves (3-100 mg/kg, p.o.), ISOAN, MAN or PAN (1-30 mg/kg, p.o.) and the reference drugs, morphine (1 mg/kg, p.o.) and acetylsalicylic acid (ASA, 100 mg/kg, p.o.), were evaluated in inflammation models such as formalin and subcutaneous air pouch models, with measurement of cell migration, exudate volume, protein extravasation, nitric oxide and pro-inflammatory cytokines. The EO from C. ternata significantly inhibited the time that the animals spent licking the formalin-injected paw in the second phase of the model at their higher doses (30 and 100 mg/kg, respectively). An inhibition of the inflammatory reaction induced after subcutaneous carrageenan injection into air pouch was also observed. In this model, the EO significantly reduced cell migration, exudate volume, protein extravased, and the increase in levels of inflammatory mediators (nitric oxide, TNF-α and IL-1ß). ISOAN, MAN and PAN behaved in the same fashion at much smaller doses. Also, these molecules were able to show significant effects in the reduction of paw edema (at all tested doses) when the phlogistic agent was carrageenan, bradykinin, 5-HT, PGE2, C48/80 or 12-O-tetradecanoylphorbol-acetate (TPA). None of the tested doses had any effect in reducing histamine-induced edema. Our results indicate that the EO from C. ternata and anthranilate derivatives demonstrates an anti-inflammatory effect.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Oils, Volatile/pharmacology , Plant Extracts/pharmacology , Rutaceae , ortho-Aminobenzoates/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Behavior, Animal/drug effects , Cell Line , Cell Movement/drug effects , Edema/drug therapy , Edema/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Mice , Nitric Oxide/metabolism , Oils, Volatile/therapeutic use , Pain/drug therapy , Pain/metabolism , Phytotherapy , Plant Extracts/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , ortho-Aminobenzoates/therapeutic useABSTRACT
The aim of this review was to extract information of the book Medicinal Plants in Folk Tradition: An Ethnobotany of Britain & Ireland published in 2004 by Allen and Hatfield, to give an overview of plants with medicinal potential and their applications. This study attempts to attest, observe and comment on the diversity of plants, as well as the accompanying information which inevitably is vital for the future development of herbal medicines for human therapy. Initially, the information in relation to medicinal plants in Ireland only was extracted from the above-mentioned book and organised in tables. Afterwards, it was analysed through the construction of maps and the positioning of each piece of information in specific geographical regions of the country. Its division into provinces was taken into consideration as well as into counties within the provinces. These maps and graphs illustrate the most predominantly reported botanical families identified and utilised (Asteraceae, Scrophulariaceae and Lamiaceae), and to the most frequently cited medicinal uses were attributed to topical applications. As a result we can see that the uses of traditional medicines vary among these different geographical areas of the country. Not only different uses were reported but also different plants used to treat the same condition, or different conditions treated with the same plant depending on the county. Various phytopharmaceuticals date back several decades and despite the existing evolving technology, without a doubt herbal medicines can and still do provide exceptional and efficacious outcomes like many of the conventional remedies available today.
ABSTRACT
Recently, we identified a new natural antinociceptive alkaloid ternanthranin, isopropyl N-methylanthranilate (ISOAN), from the plant species Choisya ternata Kunth (Rutaceae). In this work we concentrated on the elucidation of its mechanism of action in comparison with two other esters of this acid (methyl (MAN) and propyl (PAN)). Mice orally pre-treated with ISOAN, MAN or PAN (at 0.3, 1 and 3mg/kg) were less sensitive to chemical or thermal stimuli in different nociception models (formalin-, capsaicin- and glutamate-induced licking response, tail flick and hot plate). All compounds (1 and 3mg/kg) showed significant activity in the peripheral nociception models, as well as a dose-dependent spinal antinociceptive effect in the tail flick model. We observed that glibenclamide was able to reverse the antinociceptive effect of ISOAN in the hot plate model suggesting the involvement of K(+)ATP channels. The antinociceptive effect of MAN and PAN may be related to adrenergic, nitrergic and serotoninergic pathways. In addition, the antinociception of PAN was reverted by naloxone implying that the opioid pathway participates in its activity. The cholinergic and cannabinoid systems were found not be involved in the onset of the antinociceptive effects of any of the esters. In conclusion, isopropyl, methyl and propyl N-methylanthranilates produced significant peripheral and central antinociception at doses lower than that of morphine, the classical opioid analgesic drug, without causing toxicity.
Subject(s)
Analgesics/pharmacology , Hot Temperature , Pain/prevention & control , ortho-Aminobenzoates/pharmacology , Animals , Behavior, Animal/drug effects , Capsaicin , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Formaldehyde , Glutamic Acid , KATP Channels/drug effects , KATP Channels/metabolism , Male , Mice , Motor Activity/drug effects , Narcotic Antagonists/pharmacology , Neurotransmitter Agents/pharmacology , Pain/etiology , Pain/metabolism , Pain/physiopathology , Pain/psychology , Pain Perception/drug effects , Pain Threshold/drug effects , Potassium Channel Blockers/pharmacology , Reaction Time/drug effects , Time FactorsABSTRACT
The oil of babassu tree nuts (Orbignya speciosa) is a potential alternative for treatment and prophylaxis of benign prostatic hyperplasia. Improved results can be obtained by drug vectorization to the hyperplastic tissue. The main objective of this work was the preparation and characterization of poly(lactic-co-glycolic acid) (PLGA) nanoparticle and clay nanosystems containing babassu oil (BBS). BBS was extracted from the kernels of babassu tree nuts and characterized by gas chromatography-mass spectrometry as well as 1H and 13C nuclear magnetic resonance. BBS-clay nanosystems were obtained by adding polyvinylpyrrolidone, Viscogel B8®, and BBS at a 2:1:1 mass ratio and characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and laser diffraction. The PLGA-BBS nanoparticles were prepared by the precipitation-solvent evaporation method. Mean diameter, polydispersity, zeta potential, and scanning electron microscopic images of the nanosystems were analyzed. Thermogravimetric analysis showed successful formation of the nanocomposite. PLGA nanoparticles containing BBS were obtained, with a suitable size that was confirmed by scanning electron microscopy. Both nanostructured systems showed active incorporation yields exceeding 90%. The two systems obtained represent a new and potentially efficient therapy for benign prostatic hyperplasia.