Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 51(9): 4851-4859, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28375618

ABSTRACT

Outdoor emissions of primary fine particles and their contributions to indoor air quality deterioration were examined by collecting PM2.5 inside and outside a mechanically ventilated high school in the ultraindustrialized ship channel region of Houston, TX over a 2-month period. By characterizing 47 elements including lanthanoids (rare earth elements), using inductively coupled plasma-mass spectrometry, we captured indoor signatures of outdoor episodic emissions arising from nonroutine operations of petroleum refinery fluidized-bed catalytic cracking units. Average indoor-to-outdoor (I/O) abundance ratios for the majority of elements were close to unity providing evidence that indoor metal-bearing PM2.5 had predominantly outdoor origins. Only Co had an I/O abundance ratio >1 but its indoor sources could not be explicitly identified. La and 17 other elements (Na, K, V, Ni, Co, Cu, Zn, Ga, As, Se, Mo, Cd, Sn, Sb, Ba, W, and Pb), including air toxics were enriched relative to the local soil both in indoor and outdoor PM2.5 demonstrating their noncrustal origins. Several lines of evidence including receptor modeling, lanthanoid ratios, and La-Ce-Sm ternary diagrams pointed to petroleum refineries as being largely responsible for enhanced La and total lanthanoid concentrations in the majority of paired indoor and outdoor PM2.5.


Subject(s)
Air Pollutants , Petroleum , Air Pollution, Indoor , Environmental Monitoring , Lanthanoid Series Elements , Particle Size , Particulate Matter
2.
Environ Sci Technol ; 48(1): 54-62, 2014.
Article in English | MEDLINE | ID: mdl-24328156

ABSTRACT

We report the elemental composition, including Rh, Pd, and Pt, of total (i.e., tailpipe and nontailpipe) PM2.5 and PM10 emissions from predominantly gasoline-driven light-duty vehicles (LDVs) traversing the Washburn Tunnel in Houston, Texas during November and December, 2012. Using a novel sample preparation and dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry technique, we quantify the emission of numerous representative, transition, and lanthanoid elements. Two sets of time integrated PM samples were collected over 3-4week duration both inside the tunnel as well as from the tunnel ventilation air supply to derive accurate LDV source profiles incorporating three platinum group elements (PGEs) for the first time. Average Rh, Pd, and Pt concentrations from the tunnel ventilation air supply were 1.5, 11.1, and 4.5pgm(-3) in PM2.5 and 3.8, 23.1, and 15.1pgm(-3) in PM10, respectively. Rh, Pd, and Pt levels were elevated inside the Washburn Tunnel reaching 12.5, 91.1, and 30.1pgm(-3) in PM2.5 and 36.3, 214, and 61.1pgm(-3) in PM10, respectively. Significantly higher enrichment factors of Cu, Zr, Rh, Pd, Sb, and Pt (referenced to Ti in the upper continental crust) inside the tunnel compared with the ventilation air supply suggested that they are unique elemental tracers of PM derived from gasoline-driven LDVs. This highlights the importance of advancing methods to quantify the trace level PGE emissions as a technique to more accurately estimate LDVs' contributions to airborne PM. Using the emission profile based on PGEs and ambient quantification, mass balancing revealed that approximately half the fine PM mass in the tunnel could be attributed to tailpipe emissions, approximately one-quarter to road dust, with smaller contributions from brake (7%) and tire (3%) wear. On the other hand, PM10 mostly originated from resuspended road dust (∼50%), with progressively lower contributions from tailpipe emissions (14%), brake wear (9%), and tire wear (2%).


Subject(s)
Air Pollutants/analysis , Metals/analysis , Motor Vehicles , Particulate Matter/analysis , Vehicle Emissions/analysis , Dust , Environmental Monitoring , Particle Size , Texas
3.
Environ Sci Technol ; 47(18): 10179-87, 2013 Sep 17.
Article in English | MEDLINE | ID: mdl-23957269

ABSTRACT

The trans-Atlantic transport of North African dust by summertime trade winds occasionally increases ambient particulate matter (PM) concentrations in Texas above air quality standards. Exemptions from such exceedences can be sought for episodic events that are beyond regulatory control by providing qualitative supportive information such as satellite images and back-trajectories. Herein we demonstrate that chemical mass balancing can successfully isolate, differentiate, and quantify the relative contributions from local and global mineral dust sources through detailed measurements of a wide suite of elements in ambient PM. We identified a major dust storm originating in Northwest Africa in mid-July 2008 which eventually impacted air quality in Houston during July 25, 26, and 27, 2008. Daily PM2.5 and PM10 samples were collected at two sites in Houston over a 2-week period encompassing the Saharan dust episode to quantify the transported mineral dust concentrations during this peak event. Average PM concentrations more than doubled during the Saharan intrusion compared with non-Saharan. Relative concentrations of several elements often associated with anthropogenic sources were significantly diluted by crustal minerals coincident with the large-scale Saharan dust intrusion. During non-Saharan days, local mineral dust sources including cement manufacturing and soil and road dust contributed in total 26% to PM2.5 mass and 50% to PM10 mass; during the three-day Saharan episode the total dust contribution increased to 64% for PM2.5 and 85% for PM10. Importantly, this approach was also able to determine that local emissions of crustal minerals dominated the period immediately following the Saharan dust episode: simple quantification of bulk crustal materials may have misappropriated this elevated PM to trans-Atlantic transport of Saharan dust.


Subject(s)
Air Pollutants/analysis , Particulate Matter/analysis , Aerosols , Africa, Northern , Environmental Monitoring , Lanthanoid Series Elements/analysis , Metalloids/analysis , Metals/analysis , Texas , Wind
4.
Anal Chim Acta ; 735: 1-8, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22713911

ABSTRACT

Platinum group elements (PGEs) including Rh, Pd, and Pt are important tracers for vehicular emissions, though their measurement is often challenging and difficult to replicate in environmental campaigns. These challenges arise from sample preparation steps required for PGE quantitation, which often cause severe isobaric interferences and spectral overlaps from polyatomic species of other anthropogenically emitted metals. Consequently, most previous road dust studies have either only quantified PGEs or included a small number of anthropogenic elements. Therefore a novel analytical method was developed to simultaneously measure PGEs, lanthanoids, transition and main group elements to comprehensively characterize the elemental composition of urban road and tunnel dusts. Dust samples collected from the vicinity of high-traffic roadways and a busy underwater tunnel restricted to single-axle (predominantly gasoline-driven) vehicles in Houston, TX were analyzed for 45 metals with the newly developed method using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry (DRC-q-ICP-MS). Average Rh, Pd and Pt concentrations were 152±52, 770±208 and 529±130 ng g(-1) respectively in tunnel dusts while they varied between 6 and 8 ng g(-1), 10 and 88 ng g(-1) and 35 and 131 ng g(-1) in surface road dusts. Elemental ratios and enrichment factors demonstrated that PGEs in dusts originated from autocatalyst attrition/abrasion. Strong evidence is also presented for mobile source emissions of Cu, Zn, Ga, As, Mo, Cd, Sn, Sb, Ba, W and Pb. However, all other elements including rare earths most likely arose from weathering, erosion and resuspension of crustal material. These are the first such detailed measurements in Houston, the largest city in TX and fourth largest in the United States. We posit that such investigations will assist in better understanding PGE concentrations in urban environments while providing elemental data necessary to better understand anthropogenic influences on their biogeochemical cycling.

5.
Chemosphere ; 77(9): 1168-76, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19836050

ABSTRACT

Soil and atmospheric concentrations, dry deposition and soil-air gas exchange of organochlorine pesticides (OCPs) were investigated at an industrial site in Aliaga, Izmir, Turkey. Current-use pesticides, endosulfan and chlorpyrifos, had the highest atmospheric levels in summer and winter. Summertime total (gas+particle) OCP concentrations in air were higher, probably due to increased volatilization at higher temperatures and seasonal local/regional applications of current-use pesticides. Particle deposition fluxes were generally higher in summer than in winter. Overall average dry particle deposition velocity for all the OCPs was 4.9+/-4.1 cm s(-1) (average+/-SD). SigmaDDXs (sum of p,p'-DDT, p,p'-DDD, and p,p'-DDE) were the most abundant OCPs in Aliaga soils (n=48), probably due to their heavy historical use and persistence. Calculated fugacity ratios and average net gas fluxes across the soil-air interface indicated volatilization for alpha-CHL, gamma-CHL, heptachlorepoxide, cis-nonachlor, trans-nonachlor, and p,p'-DDT in summer, and for alpha-CHL, gamma-CHL, trans-nonachlor, endosulfan sulfate, and p,p'-DDT in winter. For the remaining OCPs, soil acted as a sink during both seasons. Comparison of the determined fluxes showed that dry particle, gas-phase, and wet deposition are significant OCP input mechanisms to the soil in the study area.


Subject(s)
Air Pollutants/analysis , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Soil Pollutants/analysis , Air/analysis , Environmental Monitoring , Soil/analysis , Turkey , Volatilization
6.
Environ Sci Technol ; 43(14): 5205-11, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19708342

ABSTRACT

Persistent organic pollutant (POP) concentrations were measured in stack-gases of ferrous scrap processing steel plants with electric arc furnaces (EAFs) (n = 5) in Aliaga, Izmir, Turkey and in air (n = 11) at a site near those plants. Measured stack-gas concentrations for the four plants without scrap preheating (611 +/- 311, 165,000 +/- 285,000, and 33 +/- 3 ng m(-3), average +/- SD for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively) indicated that they are significant sources for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). POP emissions from the plant with scrap preheating were significantly higher (13 500, 445 000, and 91 ng m(-3) for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively). It was also shown that the steel plants emit considerable amounts of fugitive POPs in particle-phase. Estimated emissions using the emission factors generated in this study and the production amounts suggested that the steel plants with EAFs may significantly contribute to local and global PAH, PCB, and PBDE emissions. Several other compounds (aromatic and aliphatic hydrocarbons, oxygen, sulfur, nitrogen, and chlorine-containing organic compounds, n = 49) were identified and determined semiquantitatively in the stack-gas and ambient air samples. Ambient air concentrations (62 +/- 35, 320 +/- 134 ng m(-3), 1451 +/- 954 pg m(-3), for sigma41PCBs, sigma16PAHs, and sigma7PBDEs, respectively) were significantly higher than those measured previously around the world and in the region, further confirming that the steel plants with EAFs are "hot spots" for POPs.


Subject(s)
Air Pollutants/analysis , Industrial Waste/analysis , Metallurgy , Organic Chemicals/analysis , Steel/chemistry , Environmental Monitoring/methods , Fires , Metallurgy/instrumentation , Metallurgy/methods , Organic Chemicals/toxicity , Turkey , Volatilization , Wind
7.
Environ Pollut ; 156(3): 784-93, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18640753

ABSTRACT

Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.


Subject(s)
Air/analysis , Environmental Pollutants/analysis , Industry , Polychlorinated Biphenyls/analysis , Soil/analysis , Air Movements , Air Pollutants/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Particulate Matter , Seasons , Soil Pollutants/analysis , Turkey , Volatilization
8.
J Hazard Mater ; 153(3): 1093-102, 2008 May 30.
Article in English | MEDLINE | ID: mdl-17977652

ABSTRACT

Concurrent ambient air and dry deposition samples were collected during two sampling periods at the Aliaga industrial region in Izmir, Turkey. Sigma 15-PAH (particulate+gas) concentrations ranged between 7.3 and 44.8 ng m(-3) (average+/-S.D., 25.2+/-8.8 ng m(-3)) and 10.2-71.9 ng m(-3) (44.1+/-16.6 ng m(-3)) in summer and winter, respectively. Winter/summer individual ambient PAH concentration ratios ranged between 0.8 (acenaphthene) and 6.6 (benz[a]anthracene) indicating that wintertime concentrations were affected by residential heating emissions. In contrast to the ambient concentrations, summation operator(15)-PAH particle dry deposition fluxes were higher in summer (5792+/-3516 ng m(-2)day(-1), average+/-S.D.) than in winter (2650+/-1829 ng m(-2)day(-1)), probably due to large particles from enhanced re-suspension of polluted soil particles and road dust. Average overall dry deposition velocity of PAHs calculated using the dry deposition fluxes and particle-phase concentrations was 2.9+/-3.5 cm s(-1). summation operator(15)-PAH concentrations in soils taken from 50 points in the area ranged between 11 and 4628 microg kg(-1) in dry weight. The spatial distribution of these concentrations indicated that the urban Aliaga, steel plants, the petroleum refinery, and the petrochemical plant are the major Sigma 15-PAH sources in the area. Fugacity calculations in air and soil showed that the soil acts as a secondary source to the atmosphere for low molecular weight PAHs in summer and as a sink for the higher molecular weight ones in summer and winter.


Subject(s)
Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Environmental Monitoring , Seasons , Turkey , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...