Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(36): 13635-13645, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37648245

ABSTRACT

The leaching of per- and polyfluoroalkyl substances (PFASs) from Australian firefighting training grounds has resulted in extensive contamination of groundwater and nearby farmlands. Humans, farm animals, and wildlife in these areas may have been exposed to complex mixtures of PFASs from aqueous film-forming foams (AFFFs). This study aimed to identify PFAS classes in pooled whole blood (n = 4) and serum (n = 4) from cattle exposed to AFFF-impacted groundwater and potentially discover new PFASs in blood. Thirty PFASs were identified at various levels of confidence (levels 1a-5a), including three novel compounds: (i) perfluorohexanesulfonamido 2-hydroxypropanoic acid (FHxSA-HOPrA), (ii) methyl((perfluorohexyl)sulfonyl)sulfuramidous acid, and (iii) methyl((perfluorooctyl)sulfonyl)sulfuramidous acid, belonging to two different classes. Biotransformation intermediate, perfluorohexanesulfonamido propanoic acid (FHxSA-PrA), hitherto unreported in biological samples, was detected in both whole blood and serum. Furthermore, perfluoroalkyl sulfonamides, including perfluoropropane sulfonamide (FPrSA), perfluorobutane sulfonamide (FBSA), and perfluorohexane sulfonamide (FHxSA) were predominantly detected in whole blood, suggesting that these accumulate in the cell fraction of blood. The suspect screening revealed several fluoroalkyl chain-substituted PFAS. The results suggest that targeting only the major PFASs in the plasma or serum of AFFF-exposed mammals likely underestimates the toxicological risks associated with exposure. Future studies of AFFF-exposed populations should include whole-blood analysis with high-resolution mass spectrometry to understand the true extent of PFAS exposure.


Subject(s)
Fluorocarbons , Groundwater , Humans , Animals , Cattle , Australia , Animals, Wild , Plasma , Mammals
2.
Environ Res ; 226: 115621, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36898423

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) have been associated with higher cholesterol and liver function markers in some studies, but the evidence for specific cardiometabolic conditions has been inconclusive. OBJECTIVES: We quantified the associations of single and combined PFAS with cardiometabolic markers and conditions in a cross-sectional study of three Australian communities with PFAS-contaminated water from the historical use of aqueous film-forming foam in firefighting activities, and three comparison communities. METHODS: Participants gave blood samples for measurement of nine PFAS, four lipids, six liver function markers, and completed a survey on sociodemographic characteristics and eight cardiometabolic conditions. We estimated differences in mean biomarker concentrations per doubling in single PFAS concentrations (linear regression) and per interquartile range increase in the PFAS mixture (Bayesian kernel machine regression). We estimated prevalence ratios of biomarker concentrations outside reference limits and self-reported cardiometabolic conditions (Poisson regression). RESULTS: We recruited 881 adults in exposed communities and 801 in comparison communities. We observed higher mean total cholesterol with higher single and mixture PFAS concentrations in blood serum (e.g., 0.18 mmol/L, 95% credible interval -0.06 to 0.42, higher total cholesterol concentrations with an interquartile range increase in all PFAS concentrations in Williamtown, New South Wales), with varying certainty across communities and PFAS. There was less consistency in direction of associations for liver function markers. Serum perfluorooctanoic acid (PFOA) concentrations were positively associated with the prevalence of self-reported hypercholesterolemia in one of three communities, but PFAS concentrations were not associated with self-reported type II diabetes, liver disease, or cardiovascular disease. DISCUSSION: Our study is one of few that has simultaneously quantified the associations of blood PFAS concentrations with multiple biomarkers and cardiometabolic conditions in multiple communities. Our findings for total cholesterol were consistent with previous studies; however, substantial uncertainty in our estimates and the cross-sectional design limit causal inference.


Subject(s)
Alkanesulfonic Acids , Diabetes Mellitus, Type 2 , Environmental Pollutants , Fluorocarbons , Adult , Humans , Cross-Sectional Studies , Bayes Theorem , Australia/epidemiology , Liver , Cholesterol
3.
J Hazard Mater ; 445: 130441, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36462244

ABSTRACT

This paper aims to describe the performance of a soil washing plant (SWP) for remediating a per- and poly-fluoroalkyl substances (PFASs)-contaminated soil with a high clay content (61%). The SWP used both physical and chemical processes; fractionation of the soil particles by size and partitioning of PFASs into the aqueous phase to remove PFASs from the soil. Contaminated water was treated in series with granulated activated carbon (GAC) and ion-exchange resin and reused within the SWP. Approximately 2200 t (dry weight) of PFAS-contaminated soil was treated in 25 batches of 90 t each, with a throughput of approximately 11 t soil/hr. Efficiency of the SWP was measured by observed decreases in total and leachable concentrations of PFASs in the soil. Average removal efficiencies (RE) were up to 97.1% for perfluorocarboxylic acids and 94.9% for perfluorosulfonic acids. REs varied among different PFASs depending on their chemistry (functional head group, carbon chain length) and were independent of the total PFAS concentrations in each soil batch. Mass balance analysis found approximately 90% of the PFAS mass in the soil was transferred to the wash solution and > 99.9% of the PFAS mass in the wash solution was transferred onto the GAC without any breakthrough.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Soil/chemistry , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Clay , Water Pollution/analysis , Charcoal , Plants
4.
J Hazard Mater ; 443(Pt B): 130307, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36444050

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) are a group of manmade compounds produced since the 1950 s and used in a range of industrial processes and consumer products. In Australia, PFAS serum concentrations have been measured in the general population since 2002. However, few studies have retrospectively measured PFAS concentrations in serum samples representative of a general population prior to 2000, none of which have been conducted in Australia. To understand the general population's exposure to PFAS prior to 2002, longitudinal PFAS serum concentration measurements are required. In the current study, we accessed 'The Busselton Health Study Data Bank' to analyse archived serum samples for PFAS. Repeat serum samples collected in 1975, 1981 and 1995 were obtained from 17 participants. Of the 35 PFAS analysed, 13 PFAS were detected in the serum samples collected in 1975. Both the detection frequency and ∑PFAS serum concentrations increased between 1975 and 1995. Median ∑PFAS serum concentration increased over 7-fold; from 3.3 ng/mL in 1975-26 ng/mL in 1995. The increase in serum concentrations reflects the global production history of these PFAS during this period in time.


Subject(s)
Fluorocarbons , Humans , Retrospective Studies , Australia , Industry
5.
Environ Sci Technol ; 56(23): 17052-17060, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36367310

ABSTRACT

Elevated levels of perfluorooctane sulfonate (PFOS) and elevated detection frequency of chloro-substituted PFOS have been reported in Australian firefighters with historical exposure to aqueous-film forming foam (AFFF). The aim of this study is to estimate the apparent half-lives of Cl-PFOS and PFOS isomers in firefighters following the end of exposure to 3M-AFFF. Paired serum samples from 120 firefighters, collected approximately five years apart, were analyzed for 8-Cl-PFOS (8-chloroperfluoro-1-octanesulfonic acid) and PFOS isomers via targeted LC-MS/MS. Apparent half-life was estimated by assuming a first order-elimination model. Cl-PFOS was detected in 93% of all initial serum samples (

Subject(s)
Alkanesulfonic Acids , Aviation , Firefighters , Fluorocarbons , Humans , Chromatography, Liquid , Half-Life , Tandem Mass Spectrometry , Australia , Alkanesulfonic Acids/analysis , Fluorocarbons/analysis , Water , Aerosols
6.
Environ Res ; 215(Pt 3): 114370, 2022 12.
Article in English | MEDLINE | ID: mdl-36174755

ABSTRACT

OBJECTIVES: Firefighters who used aqueous film forming foam in the past have experienced elevated exposures to perfluoroalkyl acids (PFAAs). The objective of this study was to examine the associations between clinical chemistry endpoints and serum concentrations of perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS) and perfluorooctane sulfonate (PFOS) in firefighters. Multiple linear regression was used to assess relationships between PFAA serum concentrations and biochemical markers for cardiovascular disease, kidney-, liver- and thyroid function, in a cross-sectional survey of 783 firefighters with elevated levels of PFHxS, PFHpS and PFOS in relation to the most recently reported levels in the general Australian population. Linear logistic regression was used to assess the odds ratios for selected self-reported health outcomes. Repeated measures linear mixed models were further used to assess relationships between PFAAs and biomarkers for cardiovascular disease and kidney function longitudinally in a subset of the firefighters (n = 130) where serum measurements were available from two timepoints, five years apart. In the cross-sectional analysis, higher levels of all PFAAs were significantly associated with higher levels of biomarkers for cardiovascular disease (total-cholesterol, and LDL-cholesterol). For example, doubling in PFOS serum concentration were associated with increases in total cholesterol (ß:0.111, 95% confidence interval (95%CI): 0.026, 0.195 mmol/L) and LDL-cholesterol (ß: 0.104, 95%CI:0.03, 0.178 mmol/L). Doubling in PFOA concentration, despite not being elevated in the study population, were additionally positively associated with kidney function marker urate (e.g., ß: 0.010, 95%CI; 0.004, 0.016 mmol/L) and thyroid function marker TSH (e.g., ß: 0.087, 95%CI: 0.014, 0.161 mIU/L). PFAAs were not associated with any assessed self-reported health conditions. No significant relationships were observed in the longitudinal analysis. Findings support previous studies, particularly on the association between PFAAs and serum lipids.


Subject(s)
Alkanesulfonic Acids , Cardiovascular Diseases , Environmental Pollutants , Firefighters , Fluorocarbons , Alkanesulfonates , Australia , Biomarkers , Caprylates , Cholesterol , Cross-Sectional Studies , Humans , Thyrotropin , Uric Acid
7.
Environ Sci Technol ; 56(14): 10030-10041, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35763608

ABSTRACT

This study investigated the mobilization of a wide range of per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foams (AFFFs) in water-saturated soils through one-dimensional (1-D) column experiments with a view to assessing the feasibility of their remediation by soil desorption and washing. Results indicated that sorption/desorption of most of the shorter-carbon-chain PFASs (C ≤ 6) in soil reached greater than 99% rapidly─after approximately two pore volumes (PVs) and were well predicted by an equilibrium transport model, indicating that they will be readily removed by soil washing technologies. In contrast, the equilibrium model failed to predict the mobilization of longer-chain PFASs (C ≥ 7), indicating the presence of nonequilibrium sorption/desorption (confirmed by a flow interruption experiment). The actual time taken to attain 99% sorption/desorption was up to 5 times longer than predicted by the equilibrium model (e.g., ∼62 PVs versus ∼12 PVs predicted for perfluorooctane sulfonate (PFOS) in loamy sand). The increasing contribution of hydrophobic interactions over the electrostatic interactions is suggested as the main driving factor of the nonequilibrium processes. The inverse linear relationship (R2 = 0.6, p < 0.0001) between the nonequilibrium mass transfer rate coefficient and the Freundlich sorption coefficient could potentially be a useful means for preliminary evaluation of potential nonequilibrium sorption/desorption of PFASs in soils.


Subject(s)
Fluorocarbons , Soil Pollutants , Water Pollutants, Chemical , Fluorocarbons/analysis , Soil/chemistry , Water , Water Pollutants, Chemical/analysis
8.
Water Res ; 219: 118568, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35598466

ABSTRACT

Post-anaerobic aerobic digestion (PAAD) is a promising strategy to further reduce the volume and improve the quality of anaerobically digested sludge (ADS). However, the effect of PAAD process on the fate of pharmaceuticals and personal care products (PPCPs) and per- and polyfluoroalkyl substances (PFAS) remains largely unknown. In this study, fourteen PPCPs and fifteen PFAS were detected in ADS and evaluated regarding their fate and transformation in a laboratory aerobic digester operated with a hydraulic retention time of 13 days under 22 ℃. Twelve PPCPs demonstrated significant (p < 0.05) decrease in their total concentrations (dissolved and adsorbed fractions combined) with six compounds presenting substantial transformation (> 80%) after aerobic digestion. On the contrary, PFAS were not removed and their concentrations were either increased (increasing ratio: 91 - 571%) or consistent in the sludge during PAAD process, suggesting their recalcitrance to post aerobic digestion. More than half of PPCPs and PFAS demonstrated medium to strong sorption onto solids with their solid fraction higher than 50% in the ADS. After PAAD process, sorption of four PPCPs and three PFAAs to solids was enhanced in sludge.


Subject(s)
Cosmetics , Fluorocarbons , Digestion , Fluorocarbons/analysis , Pharmaceutical Preparations , Sewage
9.
Environ Pollut ; 304: 119081, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35367104

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in the environment and often ingested with food. PFAS exposure in people can have detrimental health consequences. Therefore, reducing PFAS burdens in food items is of great importance to public health. Here, we investigated whether cooking reduces PFAS concentrations in animal-derived food products by synthesizing experimental studies. Further, we examined the moderating effects of the following five variables: cooking time, liquid/animal tissue ratio, cooking temperature, carbon chain length of PFAS and the cooking category (oil-based, water-based & no-liquid cooking). In our systematic review searches, we obtained 512 effect sizes (relative differences in PFAS concentration between raw and cooked samples) from 10 relevant studies. These studies exclusively explored changes in PFAS concentrations in cooked seafood and freshwater fish. Our multilevel-meta-analysis has revealed that, on average, cooking reduced PFAS concentrations by 29%, although heterogeneity among effect sizes was very high (I2 = 94.65%). Our five moderators cumulatively explained 49% of the observed heterogeneity. Specifically, an increase in cooking time and liquid/animal tissue ratio, as well as shorter carbon chain length of PFAS (when cooked with oil) were associated with significant reductions in PFAS concentrations. The effects of different ways of cooking depended on the other moderators, while the effect of cooking temperature itself was not significant. Overall, cooking can reduce PFAS concentrations in blue food (seafood and freshwater fish). However, it is important to note that complete PFAS elimination requires unrealistically long cooking times and large liquid/animal tissue ratios. Currently, literature on the impact of cooking of terrestrial animal produce on PFAS concentrations is lacking, which limits the inference and generalisation of our meta-analysis. However, our work represents the first step towards developing guidelines to reduce PFAS in food via cooking exclusively with common kitchen items and techniques.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/analysis , Animals , Carbon/analysis , Cooking , Fishes , Fluorocarbons/analysis , Humans , Seafood/analysis
10.
J Hazard Mater ; 434: 128886, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35436757

ABSTRACT

Electrochemical oxidation (EO) is emerging as one of the most promising methods for the degradation of recalcitrant per- and poly-fluoroalkyl substances (PFASs) in water and wastewater, as these compounds cannot be effectively treated with conventional bio- or chemical approaches. This review examines the state of the art of EO for PFASs destruction, and comprehensively compares operating parameters and treatment performance indicators for both synthetic and real contaminated water and wastewater media. The evaluation shows the need to use environmentally-relevant media to properly quantify the effectiveness/efficiency of EO for PFASs treatment. Additionally, there is currently a lack of quantification of sorption losses, resulting in a likely over-estimation of process' efficiencies. Furthermore, the majority of experimental results to date indicate that short-chain PFASs are the most challenging and need to be prioritized as environmental regulations become more stringent. Finally, and with a perspective towards practical implementation, several operational strategies are proposed, including processes combining up-concentration followed by EO destruction.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Water Purification , Fluorocarbons/analysis , Wastewater , Water , Water Pollutants, Chemical/analysis
11.
Water Res ; 216: 118295, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35316679

ABSTRACT

The fate and formation of perfluoroalkyl acids (PFAAs) have been investigated during wastewater treatment processes but studies for the entire urban wastewater system comprising the sewage transport and wastewater and sludge treatment processes are scarce. This work performs an integrated assessment of the formation and fate of PFAAs in the urban wastewater system together with their behavior in separate components of the system. To achieve this, PFAAs were monitored over five weeks in a laboratory-scale urban wastewater system comprising sewer reactors, a wastewater treatment reactor, and an anaerobic sludge digester. The system was fed with real domestic wastewater. The total mass of 11 PFAAs flowing out of the laboratory wastewater system significantly (p < 0.05) increased by 112 ± 14 (mean ± standard error)% compared to that entering the system. Formation of PFAAs was observed in all three biological processes of the system. In anaerobic sewer process, perfluoropentanoic acid (PFPeA), perfluoroheptanoic acid (PFHpA), and perfluorooctane sulfonate (PFOS) exhibited significant formation (p < 0.05) with the mass flow increased by 79 ± 24%, 109 ± 31%, and 57 ± 17%, respectively. During the wastewater treatment process, perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorododecanoic acid (PFDoDA) demonstrated significant increase (p < 0.05) in their mass flows by 176 ± 56%, 92 ± 21%, and 516 ± 184%, respectively. In contrast, only PFHxA was found to significantly (p < 0.05) increase by 130 ± 40% during anaerobic digestion process. The total mass of 11 PFAAs discharged through the effluent (201 ± 24 ng day-1) was 5 times higher than that through the digested sludge (29 ± 6 ng day-1).


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Environmental Monitoring , Fluorocarbons/analysis , Sewage , Wastewater , Water Pollutants, Chemical/analysis
12.
Environ Sci Technol ; 56(1): 368-378, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34932318

ABSTRACT

Soil contaminated with aqueous film-forming foams (AFFFs) containing per- and polyfluoroalkyl substances (PFASs) at firefighting training sites has become a major concern worldwide. To date, most studies have focused on assessing soil-water partitioning behavior of PFASs and the key factors that can affect their sorption, whereas PFASs leaching from contaminated soils have not yet been widely investigated. This study evaluated the leaching and desorption of a wide range of PFASs from twelve contaminated soils using the Australian Standard Leaching Procedure (ASLP), the U.S. EPA Multiple Extraction Procedure (MEP), and Leaching Environmental Assessment Framework (LEAF). All three leaching tests provided a similar assessment of PFAS leaching behavior. Leaching of PFASs from soils was related to C-chain lengths and their functional head groups. While short-chain (CF2 ≤ 6) PFASs were easily desorbed and leached, long-chain PFASs were more difficult to desorb. PFASs with a carboxylate head group were leached more readily and to a greater extent than those with a sulfonate or sulfonamide head group. Leaching of long-chain PFASs was pH-dependent where leaching increased at high pH, while leaching of short-chain PFASs was less sensitive to pH. Comparing different leaching tests showed that the results using the alkaline ASLP were similar to the cumulative MEP data and the former might be more practical for routine use than the MEP. No single soil property was adequately able to describe PFAS leaching from the soils. Overall, the PFAS chemical structure appeared to have a greater effect on PFAS leaching from soil than soil physicochemical properties.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Australia , Environmental Pollution , Fluorocarbons/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis
13.
Int J Hyg Environ Health ; 238: 113860, 2021 09.
Article in English | MEDLINE | ID: mdl-34649073

ABSTRACT

Per- and poly-fluoroalkyl substances (PFAS) are a range of persistent organofluorine contaminants, some of which have been found to accumulate in humans and have long half-lives. In longitudinal studies, when relying on measurements obtained at different points in time, it is critical to understand the associated analytical uncertainties when interpreting the data. In this manuscript we assess precision measurements of serum PFAS analysis in a follow-up study undertaken approximately 5 years after the initial study. These measurements included intra-(n = 58) and inter-batch duplicates (n = 57), inter-batch replicates (n = 58), inter-laboratory replicates (n = 10) and a re-analysis of 120 archived serum samples from the initial study. Average coefficients of variation (CV) for perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) associated with the reanalysis of archived samples ranged from 4 to 8%, which was greater than the inter- and intra -batch duplicates (<3%), but lower than the inter-laboratory comparison (CV ≥ 10%). Multi-centre analytical capacity in studies increases the variance within the dataset and implementation of variability-measures are useful to refine and maintain comparability. Due to long PFAS half-lives, this variance is an important consideration when deciding appropriate time intervals for sample collections in longitudinal studies, to ensure the difference is greater than the analytical uncertainty.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Caprylates , Follow-Up Studies , Humans , Longitudinal Studies , Specimen Handling , Uncertainty
14.
J Hazard Mater ; 412: 125171, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33529830

ABSTRACT

Contamination of soils and groundwater with perfluoroalkyl acids (PFAAs) is widespread due to their use in aqueous film-forming foams (AFFF). In this study the effectiveness of RemBind®, a sorbent containing activated carbon and aluminium oxyhydroxides was tested, as a tool to reduce the leaching and bioavailability of 12 PFAAs in soils, by amending contaminated soils with 5-30% (by weight) of the sorbents. Batch tests were used to determine the leaching of PFAAs. Their bioavailability to earthworms and wheat grass was assessed in greenhouse microcosms. Leaching and bioavailability of PFOS was reduced by up to 99.9%, at most sorbent application rates. Lowest reduction of leaching was found for shorter perfluoroalkyl chain length chemicals. The specific formulation of RemBind®, which is available in a basic and superior formulation, as well as the application rate were parameters for increasing effectiveness of the treatment. Furthermore, differences in leaching as well as bioavailability were seen depending on the perfluoroalkyl chain length. A preliminary assessment of the long-term stability of the treatment, assessed after a three-year curing period, suggested that the sorbent continued to be effective in reducing PFAAs in leachates, thus showing the potential of this sorbent to hinder further environmental contamination.


Subject(s)
Fluorocarbons , Groundwater , Soil Pollutants , Animals , Biological Availability , Fluorocarbons/analysis , Soil , Soil Pollutants/analysis
15.
Environ Pollut ; 276: 116686, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33611198

ABSTRACT

Previous studies have shown that accumulation of perfluoroalkyl acids (PFAAs) in the tissues of aquatic species is highly variable. Movement and migration patterns in these species represent an important consideration when evaluating contaminant accumulation in exposed biota, and may have a large influence on the risk profiles for migratory seafood species. In this study, relationships between PFAA concentrations in muscle and liver tissue, and recent fish migration history (inferred from metals profiles in fish otoliths, otherwise known as otolith chemistry) were evaluated in Sea Mullet (Mugil cephalus). A greater number of PFAAs, and higher concentrations, were found in liver compared to muscle tissue. Perfluorooctane sulfonate (PFOS) was present in highest concentrations in both muscle and liver tissues, and there was strong correlation in concentrations between these two tissues. PFOS was found to decrease and increase alongside recent strontium and barium concentrations (respectively) in the otolith, suggesting higher concentrations of PFAAs in fish recently exposed to comparatively lower salinity environments. This study highlights how otolith chemistry can be employed to examine links between contaminant concentrations in fish, and their recent migration history. This approach shows promise for studying contaminant residues in mobile seafood species within the natural environment.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Smegmamorpha , Water Pollutants, Chemical , Animals , Fishes , Fluorocarbons/analysis , Seafood/analysis , Water Pollutants, Chemical/analysis
16.
Water Res ; 189: 116583, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33161325

ABSTRACT

The formation and fate of perfluoroalkyl acids (PFAAs) in sludge during anaerobic digestion (AD) is of global importance since the sludge is a significant source of PFAAs to the environment. The formation of PFAAs from polyfluorinated compounds, namely PFAA precursors, is poorly understood in AD. This study aims to investigate the formation of PFAAs from precursors and their partitioning behaviour in waste activated sludge (WAS) during AD process. To achieve this, three isotope-labelled PFAAs were spiked and monitored along with indigenous PFAAs and precursors over eight weeks in a laboratory-scale anaerobic digester, fed with sludge from a local wastewater treatment plant and operated with a hydraulic retention time of 12 days under 35 ℃. In addition to isotope-labelled PFAAs, twelve native PFAAs and eight polyfluorinated compounds were detected in the feed and digested sludges. A mass-balance model, validated by the spiking experiment, was applied to predict the concentrations of PFAAs and precursors assuming no formation/degradation in AD. The measured concentrations of short-chain PFAAs (perfluoroalkyl carboxylates (PFCAs): C < 8; perfluoroalkane sulfonates (PFSAs): C < 6) in the AD sludge were significantly (p < 0.05) higher than the model-predicted concentrations, indicating the formation of these PFAAs from precursors in AD. In contrast, the formation of long-chain PFAAs (PFCAs: C ≥ 8; PFSAs: C ≥ 6) was not observed. Moreover, the degradation of two polyfluoroalkyl phosphates (PAPs) (6:2 PAP and 6:2/8:2 diPAP) occurred, evidenced by their measured concentrations that were statistically lower than the mass-balance predictions. Further, the AD process reduced the amount of PFAAs absorbed/adsorbed to sludge, particularly for the long-chain ones, due to the breakdown of solids.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Anaerobiosis , Carboxylic Acids , Fluorocarbons/analysis , Sewage , Water Pollutants, Chemical/analysis
17.
J Hazard Mater ; 404(Pt B): 124065, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33069992

ABSTRACT

This study investigated the potential aging and plant bioaccumulation of three perfluoroalkyl acids (PFAAs), perfluorosulphonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexanesulphonic acid (PFHxS) in 20 soils over a six-month period. Sorption coefficients (Log Kd) ranged from 0.13-1.28 for PFHxS, 0.17-1.06 for PFOA and 0.98-2.03 for PFOS, respectively, and bioaccumulation factors (Log BAFs) ranged from 0.29-1.24, 0.22-1.46 and 0.05-0.65 for PFHxS, PFOA and PFOS, respectively. Over the six-month period, Kd values significantly increased for PFHxS and PFOA but the magnitude of the increase was very small and did not translate into differences in plant PFAA-concentrations between aged and freshly spiked treatments. The Kd and BAF values were modelled by multiple linear regression (MLR) to soil physico-chemical properties and by partial least squares regression to soil spectra acquired by mid-infrared spectroscopy (DRIFT-PLSR). Modelling of each PFAA was influenced by different soil properties, including organic carbon, pH, CEC, exchangeable cations (Ca2+, Mg2+, Na+ and K+) and oxalate extractable Al. BAF values were not strongly correlated to any soil property but were inversely correlated to Kd values. Our results indicate that limited aging occurred in these soils over the six-month period.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Caprylates , Fluorocarbons/analysis , Soil
18.
Environ Sci Technol ; 54(24): 15883-15892, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33249833

ABSTRACT

The aim of this study was to assess the soil-water partitioning behavior of a wider range of per- and polyfluoroalkyl substances (PFASs) onto soils covering diverse soil properties. The PFASs studied include perfluoroalkyl carboxylates (PFCAs), perfluoroalkane sulfonates (PFSAs), fluorotelomer sulfonates (FTSs), nonionic perfluoroalkane sulfonamides (FASAs), cyclic PFAS (PFEtCHxS), per- and polyfluoroalkyl ether acids (GenX, ADONA, 9Cl-PF3ONS), and three aqueous film-forming foam (AFFF)-related zwitterionic PFASs (AmPr-FHxSA, TAmPr-FHxSA, 6:2 FTSA-PrB). Soil-water partitioning coefficients (log Kd values) of the PFASs ranged from less than zero to approximately three, were chain-length-dependent, and were significantly linearly related to molecular weight (MW) for PFASs with MW > 350 g/mol (R2 = 0.94, p < 0.0001). Across all soils, the Kd values of all short-chain PFASs (≤5 -CF2- moieties) were similar and varied less (<0.5 log units) compared to long-chain PFASs (>0.5 to 1.5  log units) and zwitterions AmPr- and TAmPr-FHxSA (∼1.5 to 2 log units). Multiple soil properties described sorption of PFASs better than any single property. The effects of soil properties on sorption were different for anionic, nonionic, and zwitterionic PFASs. Solution pH could change both PFAS speciation and soil chemistry affecting surface complexation and electrostatic processes. The Kd values of all PFASs increased when solution pH decreased from approximately eight to three. Short-chain PFASs were less sensitive to solution pH than long-chain PFASs. The results indicate the complex interactions of PFASs with soil surfaces and the need to consider both PFAS type and soil properties to describe mobility in the environment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Hydrogen-Ion Concentration , Soil , Water , Water Pollutants, Chemical/analysis
19.
Environ Res ; 190: 109963, 2020 11.
Article in English | MEDLINE | ID: mdl-32745751

ABSTRACT

Per- and poly-fluoroalkyl substances (PFASs) have been widely used and detected in human matrices. Evidence that PFAS exposure may be associated with adverse human reproductive health effects exists, however, data is limited. The use of a human matrix such as follicular fluid to determine chemical exposure, along with reproductive data will be used to investigate if there is a relationship between PFAS exposure and human fertility. OBJECTIVE: This study aims to: (1) assess if associations exist between PFAS concentrations and/or age and fertilisation rate (as determined in follicular fluid of women in Australia who received assisted reproductive treatment (ART)); and (2) assess if associations exist between PFAS concentrations and infertility aetiology. METHODS: Follicular fluids were originally collected from participants who underwent fully stimulated ART treatment cycles at an in vitro fertilisation (IVF) clinic in the period 2006-2009 and 2010-11 in Queensland, Australia. The samples were available for analysis of 32 PFASs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA) using high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). 97 samples were matched with limited demographic data (age and fertilisation rate) and five infertility factors (three known female factors): 1) endometriosis, 2) polycystic ovarian syndrome (PCOS), and 3) genital tract infections - tubal/pelvic inflammation disease; as well as 4) male factor, and 5) idiopathic or unknown from either males or females. SPSS was used for linear regression analysis. RESULTS: PFASs were detected in all follicular fluid samples with the mean concentrations of PFOS and PFOA, 4.9, and 2.4 ng/ml, respectively. A lower fertilisation rate was observed at higher age when age was added as a covariate, but there was no relationship between PFAS concentrations and fertilisation rate. There were few statistically significant associations between PFAS concentrations in follicular fluid and infertility factors. Log-transformed PFHxS concentrations were lower in females with endometriosis (factor 1) than in women who had reported 'male factors' as a reason of infertility, while PFHpA was higher in women who had infertile due to female factors (factor 1-3) compared to those who had infertile due to male factor. CONCLUSION: PFASs were detected in follicular fluid of Australian women who had been treated at an IVF clinic. PFAS exposure found in follicular fluids is linked to increased risk of some infertility factors, and increased age was associated with decreased fertilisation rate in our data. But there was no relationship between PFAS and ferlitisation rate. Further large-scale investigations of PFAS and health effects including infertility are warranted.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Infertility , Australia/epidemiology , Female , Fluorocarbons/toxicity , Follicular Fluid , Humans , Male , Queensland , Tandem Mass Spectrometry
20.
Environ Pollut ; 262: 114260, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32114330

ABSTRACT

A substantial increase in the usage of organophosphate esters (OPEs) as flame retardants and plasticizers in rubbers, textiles, upholstered furniture, lacquers, plastics, building materials and electronic equipment has resulted in their increasing concentrations in the environment over time. However, little is known about the concentrations and fate of OPEs and their metabolites (mOPEs) in biota, including chicken eggs. The aim of this study was to understand the spatial variation in the concentrations in chicken eggs and the partitioning between yolk and albumin. In total, 153 chicken eggs were purchased across Australia and analysed for 9 OPEs and 11 mOPE. Most of the compounds were found to be deposited in egg yolk, where diphenyl phosphate (DPHP, 3.8 ng/g wet weight, median) and tris(2-chloroisopropyl) phosphate (TCIPP, 1.8 ng/g wet weight, median) were predominant mOPE and OPE, respectively. Moreover, no spatial differences in concentrations of OPEs and mOPEs in eggs purchased from different locations were found in this study. Although comparable levels of ∑OPEs were detected in egg yolk and albumin, much higher concentrations of ∑mOPEs were found in yolk than albumin. Meanwhile, a negative correlation (R2 = 0.964, p = 0.018) was found between the molecular mass of analytes and partitioning coefficient of Cyolk/Cyolk+albumin (defined as chemical concentration in egg yolk divided by the sum of chemical concentrations in both yolk and albumin). These results indicate that n-octanol/water partition coefficients (log KOW) may not be a crucial factor in the distribution of OPEs and mOPEs between egg yolk and albumin, which is important in understanding distribution of emerging organic contaminants in biota.


Subject(s)
Esters , Flame Retardants/analysis , Albumins , Animals , Australia , Chickens , Environmental Monitoring , Organophosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...