Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Genet Med ; 24(9): 1941-1951, 2022 09.
Article in English | MEDLINE | ID: mdl-35678782

ABSTRACT

PURPOSE: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown. METHOD: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID). RESULTS: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition. CONCLUSION: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism.


Subject(s)
Mental Retardation, X-Linked , Protein Serine-Threonine Kinases , Symporters , Brain/abnormalities , Catalytic Domain/genetics , Hemizygote , Humans , Loss of Function Mutation , Male , Maternal Inheritance/genetics , Mental Retardation, X-Linked/genetics , Mutation, Missense , Phosphorylation , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Symporters/metabolism
2.
Hum Mutat ; 42(5): 498-505, 2021 05.
Article in English | MEDLINE | ID: mdl-33600053

ABSTRACT

ARHGEF9 defects lead to an X-linked intellectual disability disorder related to inhibitory synaptic dysfunction. This condition is more frequent in males, with a few affected females reported. Up to now, sequence variants and gross deletions have been identified in males, while only chromosomal aberrations have been reported in affected females who showed a skewed pattern of X-chromosome inactivation (XCI), suggesting an X-linked recessive (XLR) disorder. We report three novel loss-of-function (LoF) variants in ARHGEF9: A de novo synonymous variant affecting splicing (NM_015185.2: c.1056G>A, p.(Lys352=)) in one female; a nonsense variant in another female (c.865C>T, p.(Arg289*)), that is, also present as a somatically mosaic variant in her father, and a de novo nonsense variant in a boy (c.899G>A; p.(Trp300*)). Both females showed a random XCI. Thus, we suggest that missense variants are responsible for an XLR disorder affecting males and that LoF variants, mainly occurring de novo, may be responsible for an X-linked dominant disorder affecting males and females.


Subject(s)
Intellectual Disability , Codon, Nonsense , Female , Genes, X-Linked , Humans , Intellectual Disability/genetics , Male , Mutation, Missense , Rho Guanine Nucleotide Exchange Factors/genetics , X Chromosome Inactivation
3.
Genet Med ; 21(9): 2025-2035, 2019 09.
Article in English | MEDLINE | ID: mdl-30723320

ABSTRACT

PURPOSE: Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. METHODS: Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individuals either by exome sequencing or LSS Sanger sequencing. Splicing defects were assessed by transcript analysis and minigene assay. RESULTS: We reported ten APMR individuals from six unrelated families with biallelic variants in LSS. We additionally identified one affected individual with a single rare variant in LSS and an allelic imbalance suggesting a second event. Among the identified variants, two were truncating, seven were missense, and two were splicing variants. Quantification of cholesterol and its precursors did not reveal noticeable imbalance. CONCLUSION: In the cholesterol biosynthesis pathway, lanosterol synthase leads to the cyclization of (S)-2,3-oxidosqualene into lanosterol. Our data suggest LSS as a major gene causing a rare recessive neuroectodermal syndrome.


Subject(s)
Alopecia/genetics , Cholesterol/metabolism , Developmental Disabilities/genetics , Intellectual Disability/genetics , Intramolecular Transferases/genetics , Age of Onset , Alopecia/complications , Alopecia/pathology , Child , Child, Preschool , Cholesterol/genetics , Developmental Disabilities/complications , Developmental Disabilities/pathology , Epilepsy/complications , Epilepsy/genetics , Epilepsy/pathology , Female , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/pathology , Lanosterol/genetics , Lanosterol/metabolism , Male , Mutation , Pedigree , Phenotype , Squalene/analogs & derivatives , Squalene/metabolism , Exome Sequencing
4.
Orphanet J Rare Dis ; 10: 135, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26471370

ABSTRACT

BACKGROUND: Hereditary Fibrosing Poikiloderma (HFP) with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP [MIM 615704]) is a very recently described entity of syndromic inherited poikiloderma. Previously by using whole exome sequencing in five families, we identified the causative gene, FAM111B (NM_198947.3), the function of which is still unknown. Our objective in this study was to better define the specific features of POIKTMP through a larger series of patients. METHODS: Clinical and molecular data of two families and eight independent sporadic cases, including six new cases, were collected. RESULTS: Key features consist of: (i) early-onset poikiloderma, hypotrichosis and hypohidrosis; (ii) multiple contractures, in particular triceps surae muscle contractures; (iii) diffuse progressive muscular weakness; (iv) pulmonary fibrosis in adulthood and (v) other features including exocrine pancreatic insufficiency, liver impairment and growth retardation. Muscle magnetic resonance imaging was informative and showed muscle atrophy and fatty infiltration. Histological examination of skeletal muscle revealed extensive fibroadipose tissue infiltration. Microscopy of the skin showed a scleroderma-like aspect with fibrosis and alterations of the elastic network. FAM111B gene analysis identified five different missense variants (two recurrent mutations were found respectively in three and four independent families). All the mutations were predicted to localize in the trypsin-like cysteine/serine peptidase domain of the protein. We suggest gain-of-function or dominant-negative mutations resulting in FAM111B enzymatic activity changes. CONCLUSIONS: HFP with tendon contractures, myopathy and pulmonary fibrosis, is a multisystemic disorder due to autosomal dominant FAM111B mutations. Future functional studies will help in understanding the specific pathological process of this fibrosing disorder.


Subject(s)
Cell Cycle Proteins/genetics , Contracture/genetics , Muscular Diseases/genetics , Pulmonary Fibrosis/genetics , Sclerosis/genetics , Skin Abnormalities/genetics , Skin Diseases, Genetic/genetics , Tendons/pathology , Adolescent , Adult , Amino Acid Sequence , Child , Child, Preschool , Contracture/complications , Contracture/diagnosis , Female , Humans , Infant , Male , Middle Aged , Molecular Sequence Data , Muscular Diseases/complications , Muscular Diseases/diagnosis , Mutation/genetics , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/diagnosis , Sclerosis/complications , Sclerosis/diagnosis , Skin Abnormalities/complications , Skin Abnormalities/diagnosis , Skin Diseases, Genetic/complications , Skin Diseases, Genetic/diagnosis
5.
World J Gastroenterol ; 20(1): 204-13, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24415873

ABSTRACT

AIM: To evaluate the risk associated with variants of the UNC5C gene recently suspected to predispose to familial colorectal cancer (CRC). METHODS: We screened patients with familial CRC forms as well as patients with sporadic CRCs. In a first time, we analyzed exon 11 of the UNC5C gene in 120 unrelated patients with suspected hereditary CRC, 58 patients with suspected Lynch-associated cancer or polyposis, and 132 index cases of Lynch syndrome families with a characterized mutation in a DNA mismatch repair (MMR). Next, 1023 patients with sporadic CRC and 1121 healthy individuals were screened for the variants identified in patients with familial cancer. RESULTS: Of 120 patients with familial CRC of unknown etiology, one carried the previously reported mis-sense mutation p.Arg603Cys (R603C) and another exhibited the unreported variant of unknown significance p.Thr617Ile (T617I). The p.Ala628Lys (A628K) mutation previously described as the main UNC5C risk variant for familial CRC was not detected in any cases of familial CRC of unknown etiology, but was present in a patient with familial gastric cancer and in two Lynch syndrome patients in co-occurrence with MMR mutations. A statistically non-significant increase in cancer risk was identified in familial CRC and/or other Lynch-associated cancers (1/178 patients vs 2/1121 healthy controls, OR = 3.2, 95%CI: 0.29-35.05, P = 0.348) and in sporadic CRCs (4/1023 patients vs 2/1121 healthy controls, OR = 2.2, 95%CI: 0.40-12.02, P = 0.364). CONCLUSION: We confirm that UNC5C mutations are very rare in familial and sporadic CRCs, but further investigations are needed to justify routine UNC5C testing for diagnostic purposes.


Subject(s)
Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Mutation , Receptors, Cell Surface/genetics , Adenomatous Polyposis Coli/pathology , Adult , Aged , Case-Control Studies , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Exons , Female , Gene Frequency , Genetic Predisposition to Disease , Heredity , Humans , Male , Middle Aged , Netrin Receptors , Odds Ratio , Pedigree , Phenotype , Risk Assessment , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...