Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
JBMR Plus ; 7(12): e10829, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38130746

ABSTRACT

In hypoparathyroidism, lack of parathyroid hormone (PTH) leads to low calcium levels and decreased bone remodeling. Treatment with recombinant human PTH (rhPTH) may normalize bone turnover. This study aimed to investigate whether rhPTH(1-84) continued to activate intracortical bone remodeling after 30 months and promoted the transition from erosion to formation and whether this effect was transitory when rhPTH(1-84) was discontinued. Cortical histomorphometry was performed on 60 bone biopsies from patients (aged 31 to 78 years) with chronic hypoparathyroidism randomized to either 100 µg rhPTH(1-84) a day (n = 21) (PTH) or similar placebo (n = 21) (PLB) for 6 months as add-on to conventional therapy. This was followed by an open-label extension, where patients extended their rhPTH(1-84) (PTH) (n = 5), continued conventional treatment (CON) (n = 5), or withdrew from rhPTH(1-84) and resumed conventional therapy (PTHw) for an additional 24 months (n = 8). Bone biopsies were collected at months 6 (n = 42) and 30 (n = 18). After 6 and 30 months, the overall cortical microarchitecture (cortical porosity, thickness, pore density, and mean pore diameter) in the PTH group did not differ from that of the PLB/CON and PTHw groups. Still, the PTH group had a significantly and persistently higher percentage of pores undergoing remodeling than the PLB/CON groups. A significantly higher percentage of these pores was undergoing bone formation in the PTH compared with the PLB/CON groups, whereas the percentage of pores with erosion only was not different. This resulted in a shift in the ratio between formative and eroded pores, reflecting a faster transition from erosion to formation in the PTH-treated patients. In the rhPTH(1-84) withdrawal group PTHw, the latter effects of PTH were completely reversed in comparison to those of the PLB/CON groups. In conclusion, rhPTH(1-84) replacement therapy in hypoparathyroidism patients promotes intracortical remodeling and its transition from erosion to formation without affecting the overall cortical microstructure. The effect persists for at least 30 months and is reversible when treatment is withdrawn. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
Bone ; 175: 116837, 2023 10.
Article in English | MEDLINE | ID: mdl-37419297

ABSTRACT

Liquid plays an important role in bone that has a complex 3D hierarchical pore structure. However, liquid (water) is difficult to discern from e.g. an organic matrix by X-ray imaging. Therefore, we use a correlative approach using both high resolution X-ray and neutron imaging. Human femoral bone with liquid adsorbed into some of the pores was imaged with both the Neutron Microscope at the ICON beamline, SINQ at PSI, and by lab-based µCT using 2.7 µm voxel size. Segmentation of the two datasets showed that, even though the liquid was clearly distinguishable in the neutron data and not in the X-ray data, it remained challenging to segment it from bone due to overlaps of peaks in the gray level histograms. In consequence, segmentations from X-ray and neutron data varied significantly. To address this issue, the segmented X-ray porosities was overlaid on the neutron data, making it possible to localize the liquid in the vascular porosities of the bone sample and use the neutron attenuation to identify it as H2O. The contrast in the neutron images was lowered slightly between the bone and the liquid compared to the bone and the air. This correlative study shows that the complementary use of X-rays and neutrons is very favorable, since H2O is very distinct in the neutron data, while D2O, H2O, and organic matter can barely be distinguished from air in the X-ray data.


Subject(s)
Bone and Bones , Microscopy , Humans , X-Rays , Radiography , Bone and Bones/diagnostic imaging , Neutrons
3.
J Appl Crystallogr ; 56(Pt 3): 673-682, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37284268

ABSTRACT

The use of a phase-retrieval technique for propagation-based phase-contrast neutron imaging with a polychromatic beam is demonstrated. This enables imaging of samples with low absorption contrast and/or improving the signal-to-noise ratio to facilitate e.g. time-resolved measurements. A metal sample, designed to be close to a phase pure object, and a bone sample with canals partially filled with D2O were used for demonstrating the technique. These samples were imaged with a polychromatic neutron beam followed by phase retrieval. For both samples the signal-to-noise ratios were significantly improved and, in the case of the bone sample, the phase retrieval allowed for separation of bone and D2O, which is important for example for in situ flow experiments. The use of deuteration contrast avoids the use of chemical contrast enhancement and makes neutron imaging an interesting complementary method to X-ray imaging of bone.

4.
J Mech Behav Biomed Mater ; 138: 105614, 2023 02.
Article in English | MEDLINE | ID: mdl-36527978

ABSTRACT

BACKGROUND: Stomach-related disorders impose medical challenges and are associated with significant social and economic costs. The field of biomechanics is promising for understanding tissue behavior and for development of medical treatments and surgical interventions. In gastroenterology, animal models are often used when studies on humans are not possible. Often large animal models with similar anatomical characteristics (size and shape) are preferred. However, it is uncertain if stomachs from humans and large animals have similar mechanical properties. The aim of the present study is to characterize and compare hyper- and viscoelastic properties of porcine and human gastric tissue using tension and radial compression tests. METHODS: Hyperelastic and viscoelastic properties were quantified from quasi-static ramp tests and stress relaxation tests. Tension in two directions and radial compression experiments were done on intact stomach wall samples as well as on separated mucosa and muscularis layer samples from porcine and human fundus, corpus and antrum. RESULTS AND CONCLUSIONS: Similar hyper- and viscoelastic constitutive models can be used to describe porcine and human gastric tissue. In total, 19 constitutive parameters were compared and results showed significant variations between species. For example, for intact circumferential samples from antrum, the stiffness (a) and relaxation (τ1) were greater for human samples than for porcine samples (p < 0.0001). The constitutive parameters were condition-, region- and layer-dependent and no distinct pattern hereof between species was found. This indicates that different parameters must be used to describe the specific situation. The present work provides insight into porcine and human gastric radial compressive and tensile hyper- and viscoelastic properties, strengthening the inter-species relation of the biomechanical properties. Constitutive relations were established that may aid development and translation of diagnostic or therapeutic devices with computational models.


Subject(s)
Stomach , Humans , Swine , Animals , Elasticity , Stress, Mechanical , Models, Animal , Biomechanical Phenomena
5.
J Orthop Res ; 41(2): 436-446, 2023 02.
Article in English | MEDLINE | ID: mdl-35532010

ABSTRACT

Radiostereometic analysis (RSA) is an accurate method for rigid body pose (position and orientation) in three-dimensional space. Traditionally, RSA is based on insertion of periprosthetic tantalum markers and manual implant contour selection which limit clinically application. We propose an automated image registration technique utilizing digitally reconstructed radiographs (DRR) of computed tomography (CT) volumetric bone models (autorsa-bone) as a substitute for tantalum markers. Furthermore, an automated synthetic volumetric representation of total knee arthroplasty implant models (autorsa-volume) to improve previous silhouette-projection methods (autorsa-surface). As reference, we investigated the accuracy of implanted tantalum markers (marker) or a conventional manually contour-based method (mbrsa) for the femur and tibia. The data are presented as mean (standard deviation). The autorsa-bone method displayed similar accuracy of -0.013 (0.075) mm compared to the gold standard method (marker) of -0.013 (0.085). The autorsa-volume with 0.034 (0.106) mm did not markedly improve the autorsa-surface with 0.002 (0.129) mm, and none of these reached the mbrsa method of -0.009 (0.094) mm. In conclusion, marker-free RSA is feasible with similar accuracy as gold standard utilizing DRR and CT obtained volumetric bone models. Furthermore, utilizing synthetic generated volumetric implant models could not improve the silhouette-based method. However, with a slight loss of accuracy the autorsa methods provide a feasible automated alternative to the semi-automated method.


Subject(s)
Arthroplasty, Replacement, Knee , Knee Prosthesis , Tantalum , Radiostereometric Analysis/methods , Tomography, X-Ray Computed/methods
6.
JMIR Res Protoc ; 11(7): e34887, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35849443

ABSTRACT

BACKGROUND: Bone fractures are common conditions of the musculoskeletal system. Several animal models of bone fractures have been established to help elucidate the complex process of bone healing. In the last decades, drill-hole bone defects have emerged as a method to study bone healing. Animal models of drill-hole defects are easy to standardize and do not require external fixation of the bone. However, current studies of drill-hole bone defects lack detailed descriptions of techniques and interstudy standardization. OBJECTIVE: This systematic review aims to present a detailed description of the different methods used to induce drill-hole bone defects in long bones of laboratory animals and to provide a comprehensive overview of their methodology and potential for investigation of bone healing. METHODS: A systematic search of PubMed and Embase will be performed of abstracts containing variations of the following four keywords: "long bone," "drill-hole," "regeneration," and "animal model." Abstract screening and full-text screening will be performed independently by 2 reviewers, and data will be extracted to a predesigned extraction protocol. The primary outcome of the included studies is the technique used to create the drill-hole bone defect, and secondary outcomes are any measurements or analyses of bone defect and regeneration. A narrative synthesis will be used to present the primary outcome, while information on secondary outcomes will be displayed graphically. The study protocol follows the PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-analysis Protocols) guidelines. RESULTS: Abstract and full-text screening is ongoing and is expected to be completed by October 2022. Data extraction will commence immediately after, and the manuscript is expected to be completed by December 2023. The systematic review will follow the PRISMA statement. CONCLUSIONS: The strength of this systematic review is that it provides a comprehensive methodological overview of the different drill-hole methods and their advantages and disadvantages. This will assist researchers in choosing which model to use when studying different aspects of bone healing. TRIAL REGISTRATION: International Prospective Register of Systematic Reviews CRD42020213076; https://tinyurl.com/bp56wdwe. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/34887.

7.
Exp Eye Res ; 219: 109081, 2022 06.
Article in English | MEDLINE | ID: mdl-35461874

ABSTRACT

The human cornea is responsible for approximately 70% of the eye's optical power and, together with the lens, constitutes the only transparent tissue in the human body. Low-density lipoprotein receptor-related protein 1 (LRP1), a large, multitalented endocytic receptor, is expressed throughout the human cornea, yet its role in the cornea remains unknown. More than 30 years ago, LRP1 was purified by exploiting its affinity for the activated form of the protease inhibitor alpha-2-macroblulin (A2M), and the original purification protocol is generally referred to in studies involving full-length LRP1. Here, we provide a novel and simplified LRP1 purification protocol based on LRP1's affinity for receptor-related protein (RAP) that produces significantly higher yields of authentic LRP1. Purified LRP1 was used to map its unknown interactome in the human cornea. Corneal proteins extracted under physiologically relevant conditions were subjected to LRP1 affinity pull-down, and LRP1 ligand candidates were identified by LC-MS/MS. A total of 28 LRP1 ligand candidates were found, including 22 novel ligands. The LRP1 corneal interactome suggests a novel role for LRP1 as a regulator of the corneal immune response, structure, and ultimately corneal transparency.


Subject(s)
Cornea , Low Density Lipoprotein Receptor-Related Protein-1 , Protein Interaction Mapping , Chromatography, Liquid , Cornea/chemistry , Cornea/metabolism , Humans , Ligands , Lipoproteins, LDL , Low Density Lipoprotein Receptor-Related Protein-1/chemistry , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Protein Interaction Mapping/methods , Tandem Mass Spectrometry
8.
Bone ; 160: 116417, 2022 07.
Article in English | MEDLINE | ID: mdl-35398589

ABSTRACT

Prolonged disuse and substantial mechanical unloading are particularly damaging to skeletal integrity. Preclinical studies in rodents and clinical studies have highlighted the need for potent bone anabolic drugs to counteract disuse-induced osteopenia. The aim of present study was to compare the efficacy of romosozumab (Scl-Ab) and abaloparatide (ABL), alone or in combination, to prevent botulinum toxin (BTX) induced bone loss in a rat model. Eighty female Wistar rats were divided into the following six groups: 1. Baseline (n = 12); 2. Control (Ctrl) (n = 12); 3. BTX (n = 12); 4. BTX + Scl-Ab (n = 16); 5. BTX + ABL (n = 12); and 6. BTX + Scl-Ab + ABL (n = 16). Disuse was achieved by injecting 4 IU BTX into the hind limb musculature at study start. Scl-Ab (25 mg/kg) was injected s.c. twice weekly, while ABL (80 µg/kg) was injected s.c. five days a week for four weeks. Hind limb disuse dramatically decreased muscle mass and skeletal integrity and deteriorated the cortical morphology and trabecular microstructure. Treatment with Scl-Ab alone prevented most of the adverse cortical and trabecular effects of disuse, while ABL monotherapy mainly attenuated the disuse-induced loss of femoral areal bone mineral density (aBMD). Moreover, the combination of Scl-Ab and ABL not only counteracted most of the negative skeletal effects of unloading, but also increased aBMD (+10% and +20%), epiphyseal trabecular bone volume fraction (BV/TV) (+25% and +73%), and metaphyseal bone strength (+18% and +30%) significantly above that of Scl-Ab or ABL monotherapy, respectively. The potent and additive osteoanabolic effect of Scl-Ab and ABL, when given in combination, is highly intriguing and underlines that an osteoanabolic bone gain can be maximized by utilizing two pharmaceuticals targeting different cellular signaling pathways. From a clinical perspective, a combination treatment may be warranted in patients where the osteoanabolic effect of either monotherapy is not sufficient, or if a dose-reduction is required due to adverse effects.


Subject(s)
Bone Diseases, Metabolic , Animals , Bone Density , Bone Diseases, Metabolic/prevention & control , Female , Humans , Parathyroid Hormone-Related Protein/pharmacology , Rats , Rats, Wistar
9.
Kidney Int ; 101(6): 1232-1250, 2022 06.
Article in English | MEDLINE | ID: mdl-35276205

ABSTRACT

The molecular circadian clock is an evolutionary adaptation to anticipate recurring changes in the environment and to coordinate variations in activity, metabolism and hormone secretion. Parathyroid hyperplasia in uremia is a significant clinical challenge. Here, we examined changes in the transcriptome of the murine parathyroid gland over 24 hours and found a rhythmic expression of parathyroid signature genes, such as Casr, Vdr, Fgfr1 and Gcm2. Overall, 1455 genes corresponding to 6.9% of all expressed genes had significant circadian rhythmicity. Biological pathway analysis indicated that the circadian clock system is essential for the regulation of parathyroid cell function. To study this, a novel mouse strain with parathyroid gland-specific knockdown of the core clock gene Bmal1 (PTHcre;Bmal1flox/flox) was created. Dampening of the parathyroid circadian clock rhythmicity was found in these knockdown mice, resulting in abrogated rhythmicity of regulators of parathyroid cell proliferation such as Sp1, Mafb, Gcm2 and Gata3, indicating circadian clock regulation of these genes. Furthermore, the knockdown resulted in downregulation of genes involved in mitochondrial function and synthesis of ATP. When superimposed by uremia, these PTHcre;Bmal1flox/flox mice had an increased parathyroid cell proliferative response, compared to wild type mice. Thus, our findings indicate a role of the internal parathyroid circadian clock in the development of parathyroid gland hyperplasia in uremia.


Subject(s)
Circadian Clocks , Uremia , Animals , Cell Proliferation , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression Regulation , Hyperplasia , Mice , Parathyroid Glands , Uremia/genetics
10.
Front Endocrinol (Lausanne) ; 13: 831369, 2022.
Article in English | MEDLINE | ID: mdl-35222286

ABSTRACT

Exposure to hypobaric hypoxia at high altitude puts mountaineers at risk of acute mountain sickness. The carbonic anhydrase inhibitor acetazolamide is used to accelerate acclimatization, when it is not feasible to make a controlled and slow ascend. Studies in rodents have suggested that exposure to hypobaric hypoxia deteriorates bone integrity and reduces bone strength. The study investigated the effect of treatment with acetazolamide and the bisphosphonate, zoledronate, on the skeletal effects of exposure to hypobaric hypoxia. Eighty 16-week-old female RjOrl : SWISS mice were divided into five groups: 1. Baseline; 2. Normobaric; 3. Hypobaric hypoxia; 4. Hypobaric hypoxia + acetazolamide, and 5. Hypobaric hypoxia + zoledronate. Acetazolamide was administered in the drinking water (62 mg/kg/day) for four weeks, and zoledronate (100 µg/kg) was administered as a single subcutaneous injection at study start. Exposure to hypobaric hypoxia significantly increased lung wet weight and decreased femoral cortical thickness. Trabecular bone was spared from the detrimental effects of hypobaric hypoxia, although a trend towards reduced bone volume fraction was found at the L4 vertebral body. Treatment with acetazolamide did not have any negative skeletal effects, but could not mitigate the altitude-induced bone loss. Zoledronate was able to prevent the altitude-induced reduction in cortical thickness. In conclusion, simulated high altitude affected primarily cortical bone, whereas trabecular bone was spared. Only treatment with zoledronate prevented the altitude-induced cortical bone loss. The study provides preclinical support for future studies of zoledronate as a potential pharmacological countermeasure for altitude-related bone loss.


Subject(s)
Acetazolamide/therapeutic use , Altitude Sickness , Altitude , Cancellous Bone/drug effects , Cortical Bone/drug effects , Zoledronic Acid/therapeutic use , Absorptiometry, Photon , Altitude Sickness/pathology , Altitude Sickness/physiopathology , Animals , Bone Density , Cancellous Bone/pathology , Cortical Bone/pathology , Female , Mice , Quadriceps Muscle/pathology
11.
PLoS One ; 17(1): e0261150, 2022.
Article in English | MEDLINE | ID: mdl-35015767

ABSTRACT

INTRODUCTION: Management of phenylketonuria (PKU) is mainly achieved through dietary control with limited intake of phenylalanine (Phe) from food, supplemented with low protein (LP) food and a mixture of free synthetic (FS) amino acids (AA) (FSAA). Casein glycomacropeptide (CGMP) is a natural peptide released in whey during cheese making by the action of the enzyme chymosin. Because CGMP in its pure form does not contain Phe, it is nutritionally suitable as a supplement in the diet for PKU when enriched with specific AAs. Lacprodan® CGMP-20 (= CGMP) used in this study contained only trace amounts of Phe due to minor presence of other proteins/peptides. OBJECTIVE: The aims were to address the following questions in a classical PKU mouse model: Study 1, off diet: Can pure CGMP or CGMP supplemented with Large Neutral Amino Acids (LNAA) as a supplement to normal diet significantly lower the content of Phe in the brain compared to a control group on normal diet, and does supplementation of selected LNAA results in significant lower brain Phe level?. Study 2, on diet: Does a combination of CGMP, essential (non-Phe) EAAs and LP diet, provide similar plasma and brain Phe levels, growth and behavioral skills as a formula which alone consist of FSAA, with a similar composition?. MATERIAL AND METHODS: 45 female mice homozygous for the Pahenu2 mutation were treated for 12 weeks in five different groups; G1(N-CGMP), fed on Normal (N) casein diet (75%) in combination with CGMP (25%); G2 (N-CGMP-LNAA), fed on Normal (N) casein diet (75%) in combination with CGMP (19,7%) and selected LNAA (5,3% Leu, Tyr and Trp); G3 (N), fed on normal casein diet (100%); G4 (CGMP-EAA-LP), fed on CGMP (70,4%) in combination with essential AA (19,6%) and LP diet; G5 (FSAA-LP), fed on FSAA (100%) and LP diet. The following parameters were measured during the treatment period: Plasma AA profiles including Phe and Tyr, growth, food and water intake and number of teeth cut. At the end of the treatment period, a body scan (fat and lean body mass) and a behavioral test (Barnes Maze) were performed. Finally, the brains were examined for content of Phe, Tyr, Trp, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and 5-hydroxyindole-acetic acid (5-HIAA), and the bone density and bone mineral content were determined by dual-energy x-ray absorptiometry. RESULTS: Study 1: Mice off diet supplemented with CGMP (G1 (N-CGMP)) or supplemented with CGMP in combination with LNAA (G2 (N-CGMP-LNAA)) had significantly lower Phe in plasma and in the brain compared to mice fed only casein (G3 (N)). Extra LNAA (Tyr, Trp and Leu) to CGMP did not have any significant impact on Phe levels in the plasma and brain, but an increase in serotonin was measured in the brain of G2 mice compared to G1. Study 2: PKU mice fed with mixture of CGMP and EAA as supplement to LP diet (G4 (CGMP-EAA-LP)) demonstrated lower plasma-Phe levels but similar brain- Phe levels and growth as mice fed on an almost identical combination of FSAA (G5 (FSAA-LP)). CONCLUSION: CGMP can be a relevant supplement for the treatment of PKU.


Subject(s)
Amino Acids/therapeutic use , Caseins/therapeutic use , Peptide Fragments/therapeutic use , Phenylketonurias/diet therapy , Amino Acids/blood , Amino Acids/chemical synthesis , Animals , Bone Density , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Brain/metabolism , Brain/pathology , Dietary Supplements , Disease Models, Animal , Female , Maze Learning , Mice , Mice, Inbred C57BL , Phenylalanine/analysis , Phenylalanine/blood , Phenylalanine Hydroxylase/deficiency , Phenylalanine Hydroxylase/genetics , Serotonin/blood , Tyrosine/blood
12.
Bone ; 154: 116203, 2022 01.
Article in English | MEDLINE | ID: mdl-34536630

ABSTRACT

Mountaineers at high altitude are at increased risk of acute mountain sickness as well as high altitude pulmonary and cerebral edema. A densitometric study in mountaineers has suggested that expeditions at high altitude decrease bone mineral density. Surprisingly, the in vivo skeletal effects of hypobaric hypoxia are largely unknown, and have not been studied using advanced contemporary methods to assess bone microstructure. Eighty-four 22-week-old female mice were divided into seven groups with 12 mice in each group: 1. Baseline; 2. Normobaric, 4 weeks; 3. Hypobaric hypoxia, 4 weeks; 4. Normobaric, 8 weeks; 5. Hypobaric hypoxia, 8 weeks; 6. Normobaric, 12 weeks; and 7. Hypobaric hypoxia, 12 weeks. Hypobaric hypoxia mice were housed in hypobaric chambers at an ambient pressure of 500 mbar (5500 m altitude), while normobaric mice were housed at sea level atmospheric pressure for 4, 8, or 12 weeks, respectively. Hypobaric hypoxia had a profound impact on femoral cortical bone and L4 trabecular bone, while the effect on femoral trabecular bone was less pronounced. Hypobaric hypoxia reduced the bone strength of the femoral mid-diaphysis and L4 at all time-points. At femoral cortical bone, hypobaric hypoxia reduced bone formation through fewer mineralizing surfaces and lower bone formation rate after 2 weeks. In addition, bone strength decreased, and C-terminal telopeptide of type I collagen (CTX-I) increased independently of the duration of exposure to simulated high altitude. At L4, hypobaric hypoxia resulted in a substantial reduction in bone volume fraction, trabecular thickness, and trabecular number after 4 weeks of exposure. Hypobaric hypoxia reduced bone strength and femoral bone mass, while femoral trabecular bone was much less affected, indicating the skeletal response to hypobaric hypoxia differ between cortical and trabecular bone. These findings provide initial preclinical support for future clinical studies in mountaineers to assess bone status and bone strength after exposure to prolonged high altitude exposure.


Subject(s)
Altitude Sickness , Bone Density , Acute Disease , Altitude , Animals , Female , Hypoxia , Mice
13.
J Orthop Res ; 40(5): 1075-1082, 2022 05.
Article in English | MEDLINE | ID: mdl-34324215

ABSTRACT

Our novel plate design has been developed for controlled rotation of long bones by guided growth. The objective of this proof-of-concept study was to evaluate the precision of the rotation in the femur. Twelve cadaverous femora of six adults (right = 6, left = 6) underwent an osteotomy at the level of the physeal scar. The plates were inserted on each side of the distal femur. Growth was simulated by axial distraction of the bone segments. The femur was stabilized using a unilateral external fixator. Femoral torsion was assessed with computed tomography (CT) and with an electric goniometer before and after distraction. The obtained rotation was compared to the predicted rotation based on the dimension of the plate and the bone. All femora were rotated as intended. The mean obtained rotation was 26.3° (95% confidence interval [CI]: 23.5-29.0) and the mean predicted rotation was 28.2° (95% CI: 26.9-29.5) (p > 0.82). The mean axial distraction was 19.5 mm (95% CI: 17.7-21.3). The predicted rotation of the femora was similar to the obtained values on CT and by goniometer. The obtained rotation occurred as a result of an axial distraction of approximately 2 cm. This suggests a potential for controlled rotation of the femur based on the circumference of the bone and plate dimensions that occurs simultaneously with axial distraction. Clinical significance: These findings suggest a possible clinical application in the treatment of maltorsion in children by guided growth, where theplate design guides the bone into torsional axial growth correcting the deformity.


Subject(s)
Bone Plates , Femur , Adult , Cadaver , Child , Femur/diagnostic imaging , Femur/surgery , Humans , Osteotomy/methods , Proof of Concept Study
14.
J Struct Biol ; 214(1): 107822, 2022 03.
Article in English | MEDLINE | ID: mdl-34902560

ABSTRACT

Biominerals typically have complex hierarchical structures traversing many length scales. This makes their structural characterization complicated, since it requires 3D techniques that can probe full specimens at down to nanometer-resolution, a combination that is difficult - if not impossible - to achieve simultaneously. One challenging example is bone, a mineralized tissue with a highly complex architecture that is replete with a network of cells. X-ray computed tomography techniques enable multiscale structural characterization through the combination of various equipment and emerge as promising tools for characterizing biominerals. Using bone as an example, we discuss how combining different X-ray imaging instruments allow characterizing bone structures from the nano- to the organ-scale. In particular, we compare and contrast human and rodent bone, emphasize the importance of the osteocyte lacuno-canalicular network in bone, and finally illustrate how combining synchrotron X-ray imaging with laboratory instrumentation for computed tomography is especially helpful for multiscale characterization of biominerals.


Subject(s)
Biomineralization , Bone and Bones , Bone and Bones/diagnostic imaging , Imaging, Three-Dimensional , Osteocytes , Synchrotrons , Tomography, X-Ray Computed
15.
MethodsX ; 8: 101272, 2021.
Article in English | MEDLINE | ID: mdl-34434793

ABSTRACT

Quantification of osteoclasts to assess bone resorption is a time-consuming and tedious process. Since the inception of bone histomorphometry and manual counting of osteoclasts using bright-field microscopy, several approaches have been proposed to accelerate the counting process using both free and commercially available software. However, most of the present alternatives depend on manual or semi-automatic color segmentation and do not take advantage of artificial intelligence (AI). The present study directly compare estimates of osteoclast-covered surfaces (Oc.S/BS) obtained by the conventional manual method using a bright-field microscope to that obtained by a new AI-assisted method. We present a detailed step-by-step guide for the AI-based method. Tibiae from Wistar rats were either enzymatically stained for TRAP or immunostained for cathepsin K to identify osteoclasts. We found that estimation of Oc.S/BS by the new AI-assisted method was considerably less time-consuming, while still providing similar results to the conventional manual method. In addition, the retrainable AI-module used in the present study allows for fully automated overnight batch processing of multiple annotated sections.•Bone histomorphometry•AI-assisted osteoclast identification•TRAP and cathepsin K.

16.
Sci Rep ; 11(1): 12258, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112892

ABSTRACT

Glucocorticoids (GCs), such as prednisolone, are widely used to treat inflammatory diseases. Continuously long-term or high dose treatment with GCs is one of the most common causes of secondary osteoporosis and is associated with sarcopenia and increased risk of debilitating osteoporotic fragility fractures. Abaloparatide (ABL) is a potent parathyroid hormone-related peptide analog, which can increase bone mineral density (aBMD), improve trabecular microarchitecture, and increase bone strength. The present study aimed to investigate whether GC excess blunts the osteoanabolic effect of ABL. Sixty 12-13-week-old female RjOrl:SWISS mice were allocated to the following groups: Baseline, Control, ABL, GC, and GC + ABL. ABL was administered as subcutaneous injections (100 µg/kg), while GC was delivered by subcutaneous implantation of a 60-days slow-release prednisolone-pellet (10 mg). The study lasted four weeks. GC induced a substantial reduction in muscle mass, trabecular mineral apposition rate (MAR) and bone formation rate (BFR/BS), and endocortical MAR compared with Control, but did not alter the trabecular microarchitecture or bone strength. In mice not receiving GC, ABL increased aBMD, bone mineral content (BMC), cortical and trabecular microarchitecture, mineralizing surface (MS/BS), MAR, BFR/BS, and bone strength compared with Control. However, when administered concomitantly with GC, the osteoanabolic effect of ABL on BMC, cortical morphology, and cortical bone strength was blunted. In conclusion, at cortical bone sites, the osteoanabolic effect of ABL is generally blunted by short-term GC excess.


Subject(s)
Bone Density/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , Femur , Glucocorticoids/administration & dosage , Parathyroid Hormone-Related Protein/pharmacology , Adipocytes/metabolism , Animals , Biomarkers , Bone Diseases, Metabolic/drug therapy , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/metabolism , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Immunohistochemistry , Mechanical Phenomena , Mice , Osteocytes/metabolism , Osteogenesis/drug effects , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/metabolism , X-Ray Microtomography
17.
Front Endocrinol (Lausanne) ; 12: 628994, 2021.
Article in English | MEDLINE | ID: mdl-33953694

ABSTRACT

Three bone anabolic pharmaceuticals are currently approved for treatment of osteoporosis, teriparatide (PTH (1-34)), the parathyroid hormone-related protein analog abaloparatide (ABL), and romosozumab. The present study compared the effect of intermittent PTH (1-34) and ABL on bone tissue directly mole-to-mole in female mice. Forty-seven C57BL/6 mice were randomly allocated to the following groups: Baseline (n = 11), Control (Ctrl) (n = 12), PTH (n = 12), and ABL (n = 12). The mice were injected s.c. with PTH (100 µg/kg), ABL (96 µg/kg), or saline (Ctrl) five days a week for three weeks. To assess the effect of PTH and ABL, the hindlimb bones were analyzed with DXA, µCT, mechanical testing, dynamic bone histomorphometry, and histological quantification of bone cells. In addition, serum calcium concentration was determined. PTH and ABL significantly increased femoral areal bone mineral density (aBMD) (borderline significant p = 0.06 for PTH), femoral mid-diaphyseal bone strength, femoral metaphyseal and epiphyseal and vertebral bone volume fraction (BV/TV), connectivity density, volumetric bone mineral density (vBMD), and bone formation rate (BFR/BS) compared to Ctrl. In addition, ABL also significantly increased mid-diaphyseal cortical thickness and bone area compared to Ctrl. Neither PTH nor ABL significantly increased bone strength at the femoral neck. In conclusion, abaloparatide and PTH have similar bone anabolic properties when compared directly mole-to-mole in mice.


Subject(s)
Bone and Bones/drug effects , Parathyroid Hormone-Related Protein/pharmacology , Teriparatide/pharmacology , Absorptiometry, Photon , Animals , Biomechanical Phenomena/drug effects , Body Weight/drug effects , Bone Density/drug effects , Bone and Bones/diagnostic imaging , Calcium/blood , Female , Femur/anatomy & histology , Femur/diagnostic imaging , Femur/drug effects , Male , Mice, Inbred C57BL , Osteoblasts/drug effects , Osteoclasts/drug effects , Spine/diagnostic imaging , Spine/drug effects , X-Ray Microtomography
18.
High Alt Med Biol ; 22(2): 225-234, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33769867

ABSTRACT

Bromer, Frederik Duch, Mikkel Bo Brent, Michael Pedersen, Jesper Skovhus Thomsen, Annemarie Brüel, and Casper Bindzus Foldager. The effect of normobaric intermittent hypoxia therapy on bone in normal and disuse osteopenic mice. High Alt Med Biol. 22: 225-234, 2021. Background: Systemic intermittent hypoxia therapy (IHT) has been shown to elicit beneficial effects on multiple physiological systems. However, only few studies have investigated the effect of long-term normobaric IHT on bone mass and mechanical and microstructural properties. The aim of the present study was to examine the effect of IHT on bone in both healthy and osteopenic mice. Materials and Methods: Thirty mice were stratified into four groups: Ctrl, Ctrl+IHT, Botox, and Botox+IHT. Osteopenia was induced by injecting Botox into the right hindlimb of the mice causing paralysis and disuse. IHT animals were placed in a normobaric hypoxia-chamber (10% oxygen) for 1 hour twice daily 5 days/week. Animals were sacrificed after 21 days, and DEXA, micro-computed tomography, and mechanical testing were performed on the femora. Results: As expected, Botox resulted in a significant reduction of bone mineral content (-23.4%), area bone mineral density (-19.1%), femoral neck strength (Fmax: -54.7%), bone volume fraction (bone volume/tissue volume: -41.8%), and trabecular thickness (-32.4%). IHT had no measurable effect on the bone properties in either healthy or osteopenic mice. Conclusion: The study confirmed that Botox led to loss of bone mass, deterioration of trabecular microstructure, and loss of bone strength. These changes were not influenced by IHT. Notably, IHT had no detrimental effect on bone in either healthy or osteopenic mice. This indicates that IHT of ailments outside of the skeletal system may be administered without causing harm to the bone.


Subject(s)
Bone Diseases, Metabolic , Bone and Bones , Animals , Bone Density , Bone Diseases, Metabolic/etiology , Bone Diseases, Metabolic/therapy , Hypoxia/therapy , Mice , X-Ray Microtomography
19.
Calcif Tissue Int ; 108(5): 561-575, 2021 05.
Article in English | MEDLINE | ID: mdl-33386477

ABSTRACT

OBJECTIVE: Several different animal models are used to study disuse-induced bone loss. This systematic review aims to give a comprehensive overview of the animal models of disuse-induced bone loss and provide a detailed narrative synthesis of each unique animal model. METHODS: PubMed and Embase were systematically searched for animal models of disuse from inception to November 30, 2019. In addition, Google Scholar and personal file archives were searched for relevant publications not indexed in PubMed or Embase. Two reviewers independently reviewed titles and abstracts for full-text inclusion. Data were extracted using a predefined extraction scheme to ensure standardization. RESULTS: 1964 titles and abstracts were screened of which 653 full-text articles were included. The most common animal species used to model disuse were rats (59%) and mice (30%). Males (53%) where used in the majority of the studies and genetically modified animals accounted for 7%. Twelve different methods to induce disuse were identified. The most frequently used methods were hindlimb unloading (44%), neurectomy (15%), bandages and orthoses (15%), and botulinum toxin (9%). The median time of disuse was 21 days (quartiles: 14 days, 36 days) and the median number of animals per group subjected to disuse was 10 (quartiles: 7, 14). Random group allocation was reported in 43% of the studies. Fewer than 5% of the studies justified the number of animals per group by a sample size calculation to ensure adequate statistical power. CONCLUSION: Multiple animal models of disuse-induced bone loss exist, and several species of animals have successfully been studied. The complexity of disuse-induced bone loss warrants rigid research study designs. This systematic review emphasized the need for standardization of animal disuse research and reporting.


Subject(s)
Bone Diseases, Metabolic , Animals , Disease Models, Animal , Hindlimb Suspension , Male , Mice , Rats
20.
Free Radic Biol Med ; 164: 399-409, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33476796

ABSTRACT

Superoxide dismutase 3 (SOD3) is an extracellular protein with the capacity to convert superoxide into hydrogen peroxide, an important secondary messenger in redox regulation. To investigate the utility of zebrafish in functional studies of SOD3 and its relevance for redox regulation, we have characterized the zebrafish orthologues; Sod3a and Sod3b. Our analyses show that both recombinant Sod3a and Sod3b express SOD activity, however, only Sod3b is able to bind heparin. Furthermore, RT-PCR analyses reveal that sod3a and sod3b are expressed in zebrafish embryos and are present primarily in separate organs in adult zebrafish, suggesting distinct functions in vivo. Surprisingly, both RT-PCR and whole mount in situ hybridization showed specific expression of sod3b in skeletal tissue. To further investigate this observation, we compared femoral bone obtained from wild-type and SOD3-/- mice to determine whether a functional difference was apparent in healthy adult mice. Here we report, that bone from SOD3-/- mice is less mineralized and characterized by significant reduction of cortical and trabecular thickness in addition to reduced mechanical strength. These analyses show that SOD3 plays a hitherto unappreciated role in bone development and homeostasis.


Subject(s)
Superoxide Dismutase , Zebrafish , Animals , Bone and Bones/metabolism , Homeostasis , Mice , Mice, Knockout , Oxidation-Reduction , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Zebrafish/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...