Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 104(Pt B): 1955-1965, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28365291

ABSTRACT

The extraordinary biocompatibility and mechanical properties of chitinous scaffolds from marine sponges endows these structures with unique properties that render them ideal for diverse biomedical applications. In the present work, a technological route to produce "ready-to-use" tissue-engineered products based on poriferan chitin is comprehensively investigated for the first time. Three key stages included isolation of scaffolds from the marine demosponge Ianthella basta, confirmation of their biocompatibility with human mesenchymal stromal cells, and cryopreservation of the tissue-like structures grown within these scaffolds using a slow cooling protocol. Biocompatibility of the macroporous, flat chitin scaffolds has been confirmed by cell attachment, high cell viability and the ability to differentiate into the adipogenic lineage. The viability of cells cryopreserved on chitin scaffolds was reduced by about 30% as compared to cells cryopreserved in suspension. However, the surviving cells were able to retain their differentiation potential; and this is demonstrated for the adipogenic lineage. The results suggest that chitin from the marine demosponge I. basta is a promising, highly biocompatible biomaterial for stem cell-based tissue-engineering applications.


Subject(s)
Biocompatible Materials , Chitin , Mesenchymal Stem Cells/cytology , Porifera , Tissue Engineering , Tissue Scaffolds , Adipogenesis , Animals , Biocompatible Materials/chemistry , Cell Differentiation , Chitin/chemistry , Cryopreservation , Humans , Materials Testing , Porifera/chemistry , Spectroscopy, Fourier Transform Infrared , Tissue Engineering/methods
2.
Int J Biol Macromol ; 104(Pt B): 1966-1974, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28347785

ABSTRACT

The recently discovered chitin-based scaffolds derived from poriferans have the necessary prosperities for potential use in tissue engineering. Among the various demosponges of the Verongida order, Aplysina aerophoba is an attractive target for more in-depth investigations, as it is a renewable source of unique 3D microporous chitinous scaffolds. We found these chitinous scaffolds were cytocompatible and supported attachment, growth and proliferation of human mesenchymal stromal cells (hMSCs) in vitro. Cultivation of hMSCs on the scaffolds for 7days resulted in a two-fold increase in their metabolic activity, indicating increased cell numbers. Cells cultured onto chitin scaffolds in differentiation media were able to differentiate into the chondrogenic, adipogenic and osteogenic lineages, respectively. These results indicate A. aerophoba is a novel source of chitin scaffolds to futher hMSCs-based tissue engineering strategies.


Subject(s)
Chitin , Mesenchymal Stem Cells/cytology , Porifera , Tissue Engineering , Tissue Scaffolds , Adipogenesis , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Chitin/chemistry , Chondrogenesis , Humans , Mesenchymal Stem Cells/ultrastructure , Osteogenesis , Porifera/chemistry , Tissue Engineering/methods
3.
J Tissue Eng Regen Med ; 11(5): 1574-1587, 2017 05.
Article in English | MEDLINE | ID: mdl-26202781

ABSTRACT

Biofabrication of tissue engineering constructs with tailored architecture and organized cell placement using rapid prototyping technologies is a major research focus in the field of regenerative therapies. This study describes a novel alginate-based material suitable for both cell embedding and fabrication of three-dimensional (3D) structures with predefined geometry by 3D plotting. The favourable printing properties of the material were achieved by using a simple strategy: addition of methylcellulose (MC) to a 3% alginate solution resulted in a strongly enhanced viscosity, which enabled accurate and easy deposition without high technical efforts. After scaffold plotting, the alginate chains were crosslinked with Ca2+ ; MC did not contribute to the gelation and was released from the scaffolds during the following cultivation. The resulting constructs are characterized by high elasticity and stability, as well as an enhanced microporosity caused by the transient presence of MC. The suitability of the alginate/MC blend for cell embedding was evaluated by direct incorporation of mesenchymal stem cells during scaffold fabrication. The embedded cells showed high viability after 3 weeks of cultivation, which was similar to those of cells within pure alginate scaffolds which served as control. Maintenance of the differentiation potential of embedded cells, as an important requirement for the generation of functional tissue engineering constructs, was proven for adipogenic differentiation as a model for soft tissue formation. In conclusion, the temporary integration of MC into a low-concentrated alginate solution allowed the generation of scaffolds with dimensions in the range of centimetres without loss of the positive properties of low-concentrated alginate hydrogels with regard to cell embedding. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Alginates/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Methylcellulose/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Mesenchymal Stem Cells/cytology
4.
Biofabrication ; 8(1): 015015, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26924825

ABSTRACT

Additive manufacturing (AM) allows the free form fabrication of three-dimensional (3D) structures with distinct external geometry, fitting into a patient-specific defect, and defined internal pore architecture. However, fabrication of predesigned collagen scaffolds using AM-based technologies is challenging due to the low viscosity of collagen solutions, gels or dispersions commonly used for scaffold preparation. In the present study, we have developed a straightforward method which is based on 3D plotting of a highly viscous, high density collagen dispersion. The swollen state of the collagen fibrils at pH 4 enabled the homogenous extrusion of the material, the deposition of uniform strands and finally the construction of 3D scaffolds. Stabilization of the plotted structures was achieved by freeze-drying and chemical crosslinking with the carbodiimide EDC. The scaffolds exhibited high shape and dimensional fidelity and a hierarchical porosity consisting of macropores generated by strand deposition as well as an interconnected microporosity within the strands as result of the freeze-drying process. Cultivation of human mesenchymal stromal cells on the scaffolds, with and without adipogenic or osteogenic stimulation, revealed their cytocompatibility and potential applicability for adipose and bone tissue engineering.


Subject(s)
Adipogenesis/physiology , Collagen/chemistry , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Printing, Three-Dimensional , Tissue Scaffolds , Bone Regeneration/physiology , Cell Differentiation/physiology , Cells, Cultured , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Humans , Materials Testing , Mesenchymal Stem Cells/physiology , Surface Properties , Tensile Strength , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...