Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 113(36): 10145-50, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27555590

ABSTRACT

T helper 17 (TH17) cells represent a discrete TH cell subset instrumental in the immune response to extracellular bacteria and fungi. However, TH17 cells are considered to be detrimentally involved in autoimmune diseases like multiple sclerosis (MS). In contrast to TH17 cells, regulatory T (Treg) cells were shown to be pivotal in the maintenance of peripheral tolerance. Thus, the balance between Treg cells and TH17 cells determines the severity of a TH17 cell-driven disease and therefore is a promising target for treating autoimmune diseases. However, the molecular mechanisms controlling this balance are still unclear. Here, we report that pharmacological inhibition as well as genetic ablation of the protein kinase CK2 (CK2) ameliorates experimental autoimmune encephalomyelitis (EAE) severity and relapse incidence. Furthermore, CK2 inhibition or genetic ablation prevents TH17 cell development and promotes the generation of Treg cells. Molecularly, inhibition of CK2 leads to reduced STAT3 phosphorylation and strongly attenuated expression of the IL-23 receptor, IL-17, and GM-CSF. Thus, these results identify CK2 as a nodal point in TH17 cell development and suggest this kinase as a potential therapeutic target to treat TH17 cell-driven autoimmune responses.


Subject(s)
Casein Kinase II/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Casein Kinase II/deficiency , Casein Kinase II/genetics , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Forkhead Transcription Factors , Gene Expression Regulation , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Interleukin-17 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Phosphorylation , Receptors, Interleukin , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , Severity of Illness Index , Signal Transduction , T-Lymphocytes, Regulatory/cytology , Th17 Cells/pathology
2.
J Immunol ; 195(2): 621-31, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26078269

ABSTRACT

Coevolution of ticks and the vertebrate immune system has led to the development of immunosuppressive molecules that prevent immediate response of skin-resident immune cells to quickly fend off the parasite. In this article, we demonstrate that the tick-derived immunosuppressor sialostatin L restrains IL-9 production by mast cells, whereas degranulation and IL-6 expression are both unaffected. In addition, the expression of IL-1ß and IRF4 is strongly reduced in the presence of sialostatin L. Correspondingly, IRF4- or IL-1R-deficient mast cells exhibit a strong impairment in IL-9 production, demonstrating the importance of IRF4 and IL-1 in the regulation of the Il9 locus in mast cells. Furthermore, IRF4 binds to the promoters of Il1b and Il9, suggesting that sialostatin L suppresses mast cell-derived IL-9 preferentially by inhibiting IRF4. In an experimental asthma model, mast cell-specific deficiency in IRF4 or administration of sialostatin L results in a strong reduction in asthma symptoms, demonstrating the immunosuppressive potency of tick-derived molecules.


Subject(s)
Cystatins/pharmacology , Immunity, Innate/drug effects , Immunosuppressive Agents/pharmacology , Interferon Regulatory Factors/immunology , Interleukin-9/immunology , Mast Cells/drug effects , Animals , Asthma/genetics , Asthma/immunology , Asthma/pathology , Binding Sites , Cell Degranulation/immunology , Cystatins/immunology , Gene Expression Regulation , Host-Parasite Interactions/immunology , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-9/antagonists & inhibitors , Interleukin-9/genetics , Mast Cells/immunology , Mast Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , Protein Binding , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology , Signal Transduction , Transcription, Genetic
3.
Nat Immunol ; 16(3): 267-75, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25599562

ABSTRACT

The quality of the adaptive immune response depends on the differentiation of distinct CD4(+) helper T cell subsets, and the magnitude of an immune response is controlled by CD4(+)Foxp3(+) regulatory T cells (Treg cells). However, how a tissue- and cell type-specific suppressor program of Treg cells is mechanistically orchestrated has remained largely unexplored. Through the use of Treg cell-specific gene targeting, we found that the suppression of allergic immune responses in the lungs mediated by T helper type 2 (TH2) cells was dependent on the activity of the protein kinase CK2. Genetic ablation of the ß-subunit of CK2 specifically in Treg cells resulted in the proliferation of a hitherto-unexplored ILT3(+) Treg cell subpopulation that was unable to control the maturation of IRF4(+)PD-L2(+) dendritic cells required for the development of TH2 responses in vivo.


Subject(s)
Casein Kinase II/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/enzymology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Growth Processes/immunology , Cell Line , Dendritic Cells/enzymology , Dendritic Cells/immunology , Forkhead Transcription Factors/immunology , Humans , Hypersensitivity/blood , Hypersensitivity/immunology , Interferon Regulatory Factors/immunology , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Cell Surface/immunology , T-Lymphocytes, Regulatory/enzymology , Th2 Cells/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...