Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(21): eadg3683, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37224246

ABSTRACT

The rise of antimicrobial resistance poses a substantial threat to our health system, and, hence, development of drugs against novel targets is urgently needed. The natural peptide thanatin kills Gram-negative bacteria by targeting proteins of the lipopolysaccharide transport (Lpt) machinery. Using the thanatin scaffold together with phenotypic medicinal chemistry, structural data, and a target-focused approach, we developed antimicrobial peptides with drug-like properties. They exhibit potent activity against Enterobacteriaceae both in vitro and in vivo while eliciting low frequencies of resistance. We show that the peptides bind LptA of both wild-type and thanatin-resistant Escherichia coli and Klebsiella pneumoniae strains with low-nanomolar affinities. Mode of action studies revealed that the antimicrobial activity involves the specific disruption of the Lpt periplasmic protein bridge.


Subject(s)
Escherichia coli Proteins , Peptidomimetics , Enterobacteriaceae , Lipopolysaccharides , Peptidomimetics/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Carrier Proteins
3.
Nature ; 576(7787): 452-458, 2019 12.
Article in English | MEDLINE | ID: mdl-31645764

ABSTRACT

There is an urgent need for new antibiotics against Gram-negative pathogens that are resistant to carbapenem and third-generation cephalosporins, against which antibiotics of last resort have lost most of their efficacy. Here we describe a class of synthetic antibiotics inspired by scaffolds derived from natural products. These chimeric antibiotics contain a ß-hairpin peptide macrocycle linked to the macrocycle found in the polymyxin and colistin family of natural products. They are bactericidal and have a mechanism of action that involves binding to both lipopolysaccharide and the main component (BamA) of the ß-barrel folding complex (BAM) that is required for the folding and insertion of ß-barrel proteins into the outer membrane of Gram-negative bacteria. Extensively optimized derivatives show potent activity against multidrug-resistant pathogens, including all of the Gram-negative members of the ESKAPE pathogens1. These derivatives also show favourable drug properties and overcome colistin resistance, both in vitro and in vivo. The lead candidate is currently in preclinical toxicology studies that-if successful-will allow progress into clinical studies that have the potential to address life-threatening infections by the Gram-negative pathogens, and thus to resolve a considerable unmet medical need.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Gram-Negative Bacteria/drug effects , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Animals , Anti-Bacterial Agents/adverse effects , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Biological Products/chemistry , Drug Discovery , Drug Resistance, Microbial/drug effects , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Fluorescence , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/pathogenicity , Humans , Lipopolysaccharides/chemistry , Macrocyclic Compounds/adverse effects , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Male , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Microscopy, Electron, Transmission , Models, Molecular , Mutation , Peptidomimetics/adverse effects , Photoaffinity Labels
4.
Chemistry ; 19(9): 2982-9, 2013 Feb 25.
Article in English | MEDLINE | ID: mdl-23345249

ABSTRACT

The synthesis of a pH-sensitive two-station [1]rotaxane molecular switch by self-entanglement of a non-interlocked hermaphrodite molecule, containing an anilinium and triazole moieties, is reported. The anilinium was chosen as the best template for the macrocycle benzometaphenylene[25]crown-8 (BMP25C8) and allowed the self-entanglement of the molecule. The equilibrium between the hermaphrodite molecule and the pseudo[1]rotaxane was studied by (1)H NMR spectroscopy: the best conditions of self-entanglement were found in the less polar solvent CD(2)Cl(2) and at high dilution. The triazole moiety was then benzylated to afford a benzyltriazolium moiety, which then played a dual role. On one hand, it acts as a bulky gate to trap the BMP25C8, thus to avoid any self-disentanglement of the molecular architecture. On another hand, it acts as a second molecular station for the macrocycle. At acidic pH, the BMP25C8 resides around the best anilinium molecular station, displaying the lasso [1]rotaxane in a loosened conformation. The deprotonation of the anilinium molecular station triggers the shuttling of the BMP25C8 around the triazolium moiety, therefore tightening the lasso.


Subject(s)
Aniline Compounds/chemistry , Crown Ethers/chemistry , Macrocyclic Compounds/chemistry , Rotaxanes/chemistry , Rotaxanes/chemical synthesis , Solvents/chemistry , Triazoles/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL