Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell ; 175(1): 171-185.e25, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30146162

ABSTRACT

CKIα ablation induces p53 activation, and CKIα degradation underlies the therapeutic effect of lenalidomide in a pre-leukemia syndrome. Here we describe the development of CKIα inhibitors, which co-target the transcriptional kinases CDK7 and CDK9, thereby augmenting CKIα-induced p53 activation and its anti-leukemic activity. Oncogene-driving super-enhancers (SEs) are highly sensitive to CDK7/9 inhibition. We identified multiple newly gained SEs in primary mouse acute myeloid leukemia (AML) cells and demonstrate that the inhibitors abolish many SEs and preferentially suppress the transcription elongation of SE-driven oncogenes. We show that blocking CKIα together with CDK7 and/or CDK9 synergistically stabilize p53, deprive leukemia cells of survival and proliferation-maintaining SE-driven oncogenes, and induce apoptosis. Leukemia progenitors are selectively eliminated by the inhibitors, explaining their therapeutic efficacy with preserved hematopoiesis and leukemia cure potential; they eradicate leukemia in MLL-AF9 and Tet2-/-;Flt3ITD AML mouse models and in several patient-derived AML xenograft models, supporting their potential efficacy in curing human leukemia.


Subject(s)
Casein Kinase Ialpha/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Animals , Apoptosis/drug effects , Casein Kinase Ialpha/physiology , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/physiology , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/physiology , DNA-Binding Proteins , Disease Models, Animal , Enhancer Elements, Genetic/genetics , Hematopoiesis , Humans , Mice , Mice, Inbred C57BL , Oncogene Proteins, Fusion/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins , Tumor Suppressor Protein p53/physiology , Xenograft Model Antitumor Assays
2.
Cancer Cell ; 24(2): 242-56, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23890787

ABSTRACT

Senescence, perceived as a cancer barrier, is paradoxically associated with inflammation, which promotes tumorigenesis. Here, we characterize a distinct low-grade inflammatory process in stressed epithelium that is related to para-inflammation; this process either represses or promotes tumorigenesis, depending on p53 activity. Csnk1a1 (CKIα) downregulation induces a senescence-associated inflammatory response (SIR) with growth arrest in colorectal tumors, which loses its growth control capacity in the absence of p53 and instead, accelerates growth and invasiveness. Corresponding processes occur in CKIα-deleted intestinal organoids, assuming tumorigenic transformation properties ex vivo, upon p53 loss. Treatment of organoids and mice with anti-inflammatory agents suppresses the SIR and prevents p53-deficient organoid transformation and mouse carcinogenesis. SIR/para-inflammation suppression may therefore constitute a key mechanism in the anticarcinogenic effects of nonsteroidal anti-inflammatory drugs.


Subject(s)
Cell Transformation, Neoplastic/pathology , Inflammation/pathology , Neoplasms/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cellular Senescence/drug effects , Cellular Senescence/genetics , Cellular Senescence/physiology , Inflammation/genetics , Mice , Mice, Knockout , Neoplasms/genetics
3.
Nature ; 470(7334): 409-13, 2011 Feb 17.
Article in English | MEDLINE | ID: mdl-21331045

ABSTRACT

The mature gut renews continuously and rapidly throughout adult life, often in a damage-inflicting micro-environment. The major driving force for self-renewal of the intestinal epithelium is the Wnt-mediated signalling pathway, and Wnt signalling is frequently hyperactivated in colorectal cancer. Here we show that casein kinase Iα (CKIα), a component of the ß-catenin-destruction complex, is a critical regulator of the Wnt signalling pathway. Inducing the ablation of Csnk1a1 (the gene encoding CKIα) in the gut triggers massive Wnt activation, surprisingly without causing tumorigenesis. CKIα-deficient epithelium shows many of the features of human colorectal tumours in addition to Wnt activation, in particular the induction of the DNA damage response and cellular senescence, both of which are thought to provide a barrier against malignant transformation. The epithelial DNA damage response in mice is accompanied by substantial activation of p53, suggesting that the p53 pathway may counteract the pro-tumorigenic effects of Wnt hyperactivation. Notably, the transition from benign adenomas to invasive colorectal cancer in humans is typically linked to p53 inactivation, underscoring the importance of p53 as a safeguard against malignant progression; however, the mechanism of p53-mediated tumour suppression is unknown. We show that the maintenance of intestinal homeostasis in CKIα-deficient gut requires p53-mediated growth control, because the combined ablation of Csnk1a1 and either p53 or its target gene p21 (also known as Waf1, Cip1, Sdi1 and Cdkn1a) triggered high-grade dysplasia with extensive proliferation. Unexpectedly, these ablations also induced non-proliferating cells to invade the villous lamina propria rapidly, producing invasive carcinomas throughout the small bowel. Furthermore, in p53-deficient gut, loss of heterozygosity of the gene encoding CKIα caused a highly invasive carcinoma, indicating that CKIα functions as a tumour suppressor when p53 is inactivated. We identified a set of genes (the p53-suppressed invasiveness signature, PSIS) that is activated by the loss of both p53 and CKIα and which probably accounts for the brisk induction of invasiveness. PSIS transcription and tumour invasion were suppressed by p21, independently of cell cycle control. Restraining tissue invasion through suppressing PSIS expression is thus a novel tumour-suppressor function of wild-type p53.


Subject(s)
Casein Kinase Ialpha/deficiency , Colorectal Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism , Adenoma/enzymology , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Animals , Casein Kinase Ialpha/genetics , Casein Kinase Ialpha/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Cellular Senescence , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Disease Progression , Female , Fibroblasts , Genes, APC , Genes, Tumor Suppressor , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Loss of Heterozygosity , Male , Mice , Mice, Knockout , Neoplasm Invasiveness/pathology , Signal Transduction , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism
4.
BMC Neurosci ; 7 Suppl 1: S4, 2006 Oct 30.
Article in English | MEDLINE | ID: mdl-17118158

ABSTRACT

Neuronal communication is tightly regulated in time and space. Following neuronal activation, an electrical signal triggers neurotransmitter (NT) release at the active zone. The process starts by the signal reaching the synapse followed by a fusion of the synaptic vesicle (SV) and diffusion of the released NT in the synaptic cleft. The NT then binds to the appropriate receptor and induces a membrane potential change at the target cell membrane. The entire process is controlled by a fairly small set of synaptic proteins, collectively called SYCONs. The biochemical features of SYCONs underlie the properties of NT release. SYCONs are characterized by their ability to detect and respond to changes in environmental signals. For example, consider synaptotagmin I (Syt1), a prototype of a protein family with over 20 gene and variants in mammals. Syt1 is a specific example of a multi-sensor device with a large repertoire of discrete states. Several of these states are stimulated by a local concentration of signaling molecules such as Ca2+. The ability of this protein to sense signaling molecules and to adopt multiple biochemical states is shared by other SYCONs such as the synapsins (Syns). Specific biochemical states of Syns determine the accessibility of SV for NT release. Each of these states is defined by a specific alternative spliced variant with a unique profile of phosphorylation modified sites. The plasticity of the synapse is a direct reflection of SYCON's multiple biochemical states. State transitions occurs in a wide range of time scales, and therefore these molecules need to cope with events that last milliseconds (i.e., exocytosis in fast responding synapses) and with events that can carry on for many minutes (i.e., organization of SV pools). We suggest that SYCONs are optimized throughout evolution as multi-sensor devices. A full repertoire of the switches leading to alternation of protein states and a detailed characterization of protein-protein network within the synapse is critical for the development of a dynamic model of synaptic transmission.


Subject(s)
Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Animals , Neuronal Plasticity/physiology , Synaptic Vesicles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL