Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(8): 12932-12943, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157442

ABSTRACT

A method based on femtosecond two-photon excitation has been developed for simultaneous visualization of interference-free fluorescence of H and O atoms in turbulent flames. This work shows pioneering results on single-shot simultaneous imaging of these radicals under non-stationary flame conditions. The fluorescence signal, showing the distribution of H and O radicals in premixed CH4/O2 flames was investigated for equivalence ratios ranging from ϕ = 0.8 to ϕ = 1.3. The images have been quantified through calibration measurements and indicate single-shot detection limits on the order of a few percent. Experimental profiles have also been compared with profiles from flame simulations, showing similar trends.

2.
Rev Sci Instrum ; 93(11): 113709, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461456

ABSTRACT

Advanced instrumentation and versatile setups are needed for understanding light interaction with biological targets. Such instruments include (1) microscopes and 3D scanners for detailed spatial analysis, (2) spectral instruments for deducing molecular composition, (3) polarimeters for assessing structural properties, and (4) goniometers probing the scattering phase function of, e.g., tissue slabs. While a large selection of commercial biophotonic instruments and laboratory equipment are available, they are often bulky and expensive. Therefore, they remain inaccessible for secondary education, hobbyists, and research groups in low-income countries. This lack of equipment impedes hands-on proficiency with basic biophotonic principles and the ability to solve local problems with applied physics. We have designed, prototyped, and evaluated the low-cost Biophotonics, Imaging, Optical, Spectral, Polarimetric, Angular, and Compact Equipment (BIOSPACE) for high-quality quantitative analysis. BIOSPACE uses multiplexed light-emitting diodes with emission wavelengths from ultraviolet to near-infrared, captured by a synchronized camera. The angles of the light source, the target, and the polarization filters are automated by low-cost mechanics and a microcomputer. This enables multi-dimensional scatter analysis of centimeter-sized biological targets. We present the construction, calibration, and evaluation of BIOSPACE. The diverse functions of BIOSPACE include small animal spectral imaging, measuring the nanometer thickness of a bark-beetle wing, acquiring the scattering phase function of a blood smear and estimating the anisotropic scattering and the extinction coefficients, and contrasting muscle fibers using polarization. We provide blueprints, component list, and software for replication by enthusiasts and educators to simplify the hands-on investigation of fundamental optical properties in biological samples.


Subject(s)
Hand , Software , Animals , Spectrum Analysis , Anisotropy , Calibration
3.
Energy Fuels ; 35(9): 7179-7192, 2021 May 06.
Article in English | MEDLINE | ID: mdl-34054210

ABSTRACT

This paper presents a joint experimental and numerical study on premixed laminar ammonia/methane/air flames, aiming to characterize the flame structures and NO formation and determine the laminar flame speed under different pressure, equivalence ratio, and ammonia fraction in the fuel. The experiments were carried out in a lab-scale pressurized vessel with a Bunsen burner installed with a concentric co-flow of air. Measurements of NH and NO distributions in the flames were made using planar laser-induced fluorescence. A novel method was presented for determination of the laminar flame speed from Bunsen-burner flame measurements, which takes into account the non-uniform flow in the unburned mixture and local flame stretch. NH profiles were chosen as flame front markers. Direct numerical simulation of the flames and one-dimensional chemical kinetic modeling were performed to enhance the understanding of flame structures and evaluate three chemical kinetic mechanisms recently reported in the literature. The stoichiometric and fuel-rich flames exhibit a dual-flame structure, with an inner premixed flame and an outer diffusion flame. The two flames interact, which affects the NO emissions. The impact of the diffusion flame on the laminar flame speed of the inner premixed flame is however minor. At elevated pressures or higher ammonia/methane ratios, the emission of NO is suppressed as a result of the reduced radical mass fraction and promoted NO reduction reactions. It is found that the laminar flame speed measured in the present experiments can be captured by the investigated mechanisms, but quantitative predictions of the NO distribution require further model development.

4.
Opt Express ; 29(5): 7232-7246, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726229

ABSTRACT

Stray light is a known strong interference in spectroscopic measurements. Photons from high-intensity signals that are scattered inside the spectrometer, or photons that enter the detector through unintended ways, will be added to the spectrum as an interference signal. A general experimental solution to this problem is presented here by introducing a customized fiber for signal collection. The fiber-mount to the spectrometer consists of a periodically arranged fiber array that, combined with lock-in analysis of the data, is capable of suppressing stray light for improved spectroscopy. The method, which is referred to as fiber-based periodic shadowing, was applied to Raman spectroscopy in combustion. The fiber-based stray-light suppression method is implemented in an experimental setup with a high-power high-repetition-rate laser system used for Raman measurements in different room-temperature gas mixtures and a premixed flame. It is shown that the stray-light level is reduced by up to a factor of 80. Weak spectral lines can be distinguished, and therefore better molecular species identification, as well as concentration and temperature evaluation, were performed. The results show that the method is feasible and efficient in practical use and that it can be employed as a general tool for improving spectroscopic accuracy.

5.
Opt Express ; 29(2): 1048-1063, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726327

ABSTRACT

A time-resolving filtering technique developed to improve background suppression in Raman spectroscopy is presented and characterized. The technique enables separation of signal contributions via their polarization dependency by the addition of a waveplate to a normal measurement system and data post-processing. As a result, background interferences of broadband laser-induced fluorescence and incandescence, as well as flame luminosity and blackbody radiation, were effectively suppressed from Raman spectra. Experimental setting parameters of the method were investigated under well-controlled conditions to assess their impact on the background-filtering ability, and the overall trend was understood. The fluorescence background was effectively suppressed for all investigated settings of modulation period, number of accumulations, and recording duration, with the spectrum quality preserved after the filtering. For practical application, the method was tested for measurements in a sooting flame accompanied by a strong luminosity and interfering laser-induced background signals. The technique resulted in a 200-fold decrease of the background and allowed for quantitative analyses of concentrations and temperatures from the filtered data. Thus, the method shows strong potential to extend the applicability of Raman spectroscopy, in particular for in situ diagnostics under challenging experimental conditions.

6.
Appl Spectrosc ; 75(6): 690-697, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33599525

ABSTRACT

Online measurements of the raw gas composition, including tars and water, during biomass gasification provide valuable information in fundamental investigations and for process control. Mainly consisting of hydrocarbons, tars can, in principle, be measured using Fourier transform infrared (FT-IR) spectroscopy. However, an instrument subjected to raw gas runs the risk of condensation of tars on optical components and subsequent malfunction. Therefore, an external cell, heated to at least 400 ℃, has been designed to ensure that tars remain in the gas phase during FT-IR measurements. The cell was used for on-line FT-IR measurements of permanent gases (CO, CO2, CH4), water, and tars during the operation of a lab-scale downdraft gasifier using wood pellets, bark pellets, and char chips. Based on calibration, the measurement error of permanent gases was estimated to be 0.2%. Concentrations evaluated from spectral signatures of hydrocarbons in tar are in good agreement with results from solid-phase adsorption measurements and correlated well with operational changes in the gasifier.


Subject(s)
Gases , Tars , Biomass , Spectroscopy, Fourier Transform Infrared , Water
7.
Opt Express ; 27(18): 25656-25669, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510434

ABSTRACT

A model based on rate-equation analysis has been developed for simulation of two-photon-excited laser-induced fluorescence of carbon monoxide (CO) in the Hopfield-Birge band at 230 nm. The model has been compared with experimental fluorescence profiles measured along focused beams provided by lasers emitting nano-, pico-, and femtosecond pulses. Good quantitative agreement was obtained between simulations and experimental data obtained in premixed CH4/C2H4-air flames. For excitation with femtosecond pulses, experimental and simulated fluorescence signals showed quadratic dependence on laser power under conditions of low laser irradiance, whereas different sublinear dependencies were obtained at higher irradiances due to photoionization. Simulations of CO signal versus femtosecond laser linewidth suggest the strongest signal for a transform-limited pulse, which is sufficiently broad spectrally to cover the CO Q-branch absorption spectrum. Altogether, the developed rate-equation model allows for analysis of two-photon excitation fluorescence to arrange suitable diagnostic configurations and retrieve quantitative data for CO as well as other species in combustion, such as atomic oxygen and hydrogen.

8.
Anal Chem ; 91(7): 4719-4726, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30835101

ABSTRACT

An understanding of potassium chemistry in energy conversion processes supports the development of complex biomass utilization with high efficiency and low pollutant emissions. Potassium exists mainly as potassium hydroxide (KOH), potassium chloride (KCl), and atomic potassium (K) in combustion and related thermochemical processes. We report, for the first time, the measurement of the ultraviolet (UV) absorption cross sections of KOH and KCl at temperatures between 1300 K and 1800 K, using a newly developed method. Using the spectrally resolved UV absorption cross sections, the concentrations of KOH and KCl were measured simultaneously. In addition, we measured the concentrations of atomic K using tunable diode laser absorption spectroscopy, both at 404.4 and 769.9 nm. The 404.4 nm line was utilized to expand the measurement dynamic range to higher concentrations. A constant amount of KCl was seeded into premixed CH4/air flames with equivalence ratios varied from 0.67 to 1.32, and the concentrations of KOH, KCl, and atomic K in the hot flue gas were measured nonintrusively. The results indicate that these techniques can provide comprehensive data for quantitative understanding of the potassium chemistry in biomass combustion/gasification.


Subject(s)
Hot Temperature , Hydroxides/analysis , Potassium Chloride/analysis , Potassium Compounds/analysis , Gases/chemistry , Spectrophotometry, Ultraviolet
9.
Appl Spectrosc ; 72(9): 1388-1395, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29589783

ABSTRACT

Spectrally resolved ultraviolet (UV) absorption cross-sections of gas-phase sodium chloride (NaCl), potassium hydroxide (KOH), and sodium hydroxide (NaOH) were measured, for the first time, in hot flue gases at different temperatures. Homogenous gas-phase NaCl, KCl (potassium chloride), NaOH, and KOH at temperatures 1200 K, 1400 K, 1600 K, and 1850 K were prepared in the post-flame zone of laminar flames by seeding nebulized droplets out of aqueous solution of corresponding alkali species. The amount of droplets seeded into the flame was kept constant, so the relative concentration of different alkali species can be derived. The broadband UV absorption cross-section of KCl vapor reported by Leffler et al. was adopted to derive the absorption cross-section curves of NaCl, NaOH, and KOH with the corresponding measured spectrally resolved absorbance spectra. No significant changes in the spectral structures in the absorption cross-sections were found as the temperature varied between 1200 K and 1850 K, except for NaOH at around 320 nm. The difference between the absorption spectral curves of alkali chlorides and hydroxides is significant at wavelengths above 300 nm, which thus can be used to distinguish and obtain the concentrations of alkali chlorides and hydroxides in the broadband UV absorption measurements.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 184: 235-242, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28501744

ABSTRACT

A new scheme for NH2 detection by means of laser-induced fluorescence (LIF) with excitation around wavelength 385nm, accessible using the second harmonic of a solid-state Alexandrite laser, is presented. Detection of NH2 was confirmed by identification of corresponding lines in fluorescence excitation spectra measured in premixed NH3-air flames and on NH2 radicals generated through NH3 photolysis in a nonreactive flow at ambient conditions. Moreover, spectral simulations allow for tentative NH2 line identification. Dispersed fluorescence emission spectra measured in flames and photolysis experiments showed lines attributed to vibrational bands of the NH2 A2A1←X2B1 transition but also a continuous structure, which in flame was observed to be dependent on nitrogen added to the fuel, apparently also generated by NH2. A general conclusion was that fluorescence interferences need to be carefully considered for NH2 diagnostics in this spectral region. Excitation for laser irradiances up to 0.2GW/cm2 did not result in NH2 fluorescence saturation and allowed for efficient utilization of the available laser power without indication of laser-induced photochemistry. Compared with a previously employed excitation/detection scheme for NH2 at around 630nm, excitation at 385.7nm showed a factor of ~15 higher NH2 signal. The improved signal allowed for single-shot NH2 LIF imaging on centimeter scale in flame with signal-to-noise ratio of 3 for concentrations around 1000ppm, suggesting a detection limit around 700ppm. Thus, the presented approach for NH2 detection provides enhanced possibilities for characterization of fuel-nitrogen combustion chemistry.

11.
Appl Spectrosc ; 71(6): 1289-1299, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28534679

ABSTRACT

Laser-induced photofragmentation fluorescence has been investigated for the imaging of alkali compounds in premixed laminar methane-air flames. An ArF excimer laser, providing pulses of wavelength 193 nm, was used to photodissociate KCl, KOH, and NaCl molecules in the post-flame region and fluorescence from the excited atomic alkali fragment was detected. Fluorescence emission spectra showed distinct lines of the alkali atoms allowing for efficient background filtering. Temperature data from Rayleigh scattering measurements together with simulations of potassium chemistry presented in literature allowed for conclusions on the relative contributions of potassium species KOH and KCl to the detected signal. Experimental approaches for separate measurements of these components are discussed. Signal power dependence and calculated fractions of dissociated molecules indicate the saturation of the photolysis process, independent on absorption cross-section, under the experimental conditions. Quantitative KCl concentrations up to 30 parts per million (ppm) were evaluated from the fluorescence data and showed good agreement with results from ultraviolet absorption measurements. Detection limits for KCl photofragmentation fluorescence imaging of 0.5 and 1.0 ppm were determined for averaged and single-shot data, respectively. Moreover, simultaneous imaging of KCl and NaCl was demonstrated using a stereoscope with filters. The results indicate that the photofragmentation method can be employed for detailed studies of alkali chemistry in laboratory flames for validation of chemical kinetic mechanisms crucial for efficient biomass fuel utilization.

12.
Opt Lett ; 40(24): 5718-21, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26670495

ABSTRACT

We report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse. By extracting the decay times of the individual transitions, the J-dependent Raman linewidths can be calculated. Self-broadened S-branch linewidths for nitrogen and oxygen at 293 K and ambient pressure are in good agreement with previous time-domain measurements. Experimental considerations of the approach are discussed along with its merits and limitations. The approach can be extended to a wide range of pressures and temperatures and has potential for simultaneous single-shot thermometry and linewidth determination.

13.
Tissue Eng Part C Methods ; 21(11): 1162-70, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26398224

ABSTRACT

Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 µm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.


Subject(s)
Cellulose/pharmacology , Nanoparticles/chemistry , Nerve Net/physiology , Neurons/physiology , Tissue Scaffolds/chemistry , Animals , Cell Adhesion/drug effects , Cell Count , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Collagen/pharmacology , Microscopy , Nerve Net/drug effects , Neurons/drug effects , PC12 Cells , Rats , Spectrum Analysis, Raman
14.
Appl Opt ; 54(5): 1058-64, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25968022

ABSTRACT

A laser diagnostic concept for measurement of potassium chloride (KCl) and potentially other alkali compounds in large-scale boilers and furnaces of limited optical access is presented. Single-ended, range-resolved, quantitative detection of KCl is achieved by differential absorption light detection and ranging (DIAL) based on picosecond laser pulses. Picosecond DIAL results have been compared experimentally with line-of-sight measurements using a commercial instrument, the in situ alkali chloride monitor (IACM), utilizing differential optical absorption spectroscopy. For centimeter-scale range resolution and a collection distance of 2.5 m, picosecond DIAL allowed for measurement of KCl concentrations around 130 ppm at 1200 K, in good agreement with values obtained by IACM. The DIAL data indicate a KCl detection limit of around 30 ppm for the present experimental conditions. In addition, a double-pulse DIAL setup has been developed and demonstrated for measurements under dynamic conditions with strong Mie scattering. The picosecond DIAL results are discussed and related to possible implementations of the method for measurements in industrial environments.

15.
ACS Catal ; 5(4): 2028-2034, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25893136

ABSTRACT

The gas composition surrounding a catalytic sample has direct impact on its surface structure, which is essential when in situ investigations of model catalysts are performed. Herein a study of the gas phase close to a Pd(110) surface during CO oxidation under semirealistic conditions is presented. Images of the gas phase, provided by planar laser-induced fluorescence, clearly visualize the formation of a boundary layer with a significantly lower CO partial pressure close to the catalytically active surface, in comparison to the overall concentration as detected by mass spectrometry. The CO partial pressure variation within the boundary layer will have a profound effect on the catalysts' surface structure and function and needs to be taken into consideration for in situ model catalysis studies.

16.
J Biophotonics ; 7(1-2): 126-34, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23836627

ABSTRACT

Chemical and structural composition of wood biomass is studied by label-free and chemically specific Coherent Anti-Stokes Raman Scattering (CARS) microscopy. A concept developed for assignment and semi-quantitative imaging of sample components; cellulose, hemicellulose, and lignin; by multiplex CARS microspectroscopy and subsequent data analysis is presented. Specific imaging without fluorescence backround is achieved an order of magnitude faster compared with conventional Raman microscopy. Laser polarization control yield information on molecular arrangement in wood fibers. Narrowband CARS excitation of single vibrations allows for three-dimensional volume imaging. Thus, CARS microscopy has potential as an important instrument for characterization of lignocellulosic materials.


Subject(s)
Biomass , Lignin/chemistry , Microscopy/methods , Spectrum Analysis, Raman/methods , Imaging, Three-Dimensional , Time Factors , Wood/chemistry
17.
Opt Express ; 20(18): 20688-97, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-23037117

ABSTRACT

Ammonia detection is highly relevant for combustion in boilers and furnaces since NH3 is able to suppress nitric oxide levels by catalytic as well as non-catalytic reduction. The mixing of ammonia with flue gases is an important parameter to obtain efficient non-catalytic reduction. In this paper picosecond DIAL was used for range-resolved, single ended, NH3 detection, utilizing a tunable picosecond laser source. The absorption spectrum of the A(ν2 = 1) ← X(ν2 = 0) band was recorded and 212.2 and 214.5 nm was selected as the on- and off-resonance wavelength, respectively. One-dimensional concentration profiles with various NH3 concentration distributions are presented. The detection limit was found to be 40 ppm with a spatial resolution of 16 cm.


Subject(s)
Ammonia/analysis , Photometry/instrumentation , Radar/instrumentation , Absorption , Equipment Design , Equipment Failure Analysis
18.
Biotechnol J ; 7(5): 594-601, 2012 May.
Article in English | MEDLINE | ID: mdl-22442011

ABSTRACT

There is increasing interest in bioengineering of lipids for use in functional foods, pharmaceuticals, and biofuels. Saccharomyces cerevisiae is a widely utilized cell factory for biotechnological production, thus a tempting alternative. Herein, we show how its neutral lipid accumulation varies throughout metabolic phases under nutritional conditions relevant for large-scale fermentation. Population-averaged metabolic data were correlated with lipid storage at the single-cell level monitored at submicron resolution by label-free coherent anti-Stokes Raman scattering (CARS) microscopy. While lipid droplet sizes are fairly constant, the number of droplets is a dynamic parameter determined by glucose and ethanol levels. The lowest number of lipid droplets is observed in the transition phase between glucose and ethanol fermentation. It is followed by a buildup during the ethanol phase. The surplus of accumulated lipids is then mobilized at concurrent glucose and ethanol starvation in the subsequent stationary phase. Thus, the highest amount of lipids is found in the ethanol phase, which is about 0.3 fL/cell. Our results indicate that the budding yeast, S. cerevisiae, can be used for the biosynthesis of lipids and demonstrate the strength of CARS microscopy for monitoring the dynamics of lipid metabolism at the single-cell level of importance for optimized lipid production.


Subject(s)
Lipids/biosynthesis , Microscopy/methods , Saccharomyces cerevisiae/metabolism , Single-Cell Analysis/methods , Spectrum Analysis, Raman/methods , Fermentation , Lipids/chemistry , Saccharomyces cerevisiae/chemistry
19.
J Biophotonics ; 5(5-6): 404-14, 2012 May.
Article in English | MEDLINE | ID: mdl-22461222

ABSTRACT

Non-linear microscopy has been used to characterize bovine smooth muscle cells and their proliferation, migration, and differentiation in hydrogel cellulose scaffolds, toward the development of fully functional blood vessel implants. The extracellular matrix (ECM) composed of cellulose and endogenous collagen fibers was imaged using Second Harmonic Generation (SHG) microscopy and the cell morphology by Coherent Anti-Stokes Raman Scattering (CARS) microscopy. Images prove that cells adhere on the cellulose scaffold without additional surface modification and that both contractile and proliferating phenotypes are developed. This work shows that non-linear microscopy contributes with unique insights in cell interactions with (artificial) ECM components and has the potential to become an established characterization method in tissue engineering.


Subject(s)
Biomimetics , Cellulose/metabolism , Extracellular Matrix/metabolism , Microscopy/methods , Myocytes, Smooth Muscle/cytology , Animals , Cattle , Cell Adhesion , Cell Differentiation , Cell Movement , Cell Proliferation , Collagen/biosynthesis , Myocytes, Smooth Muscle/metabolism , Spectrum Analysis, Raman
20.
J Biomed Mater Res A ; 100(4): 948-57, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22275210

ABSTRACT

Cellulose perforated by micro-channels (Ø ~500 µm) has been investigated as a potential future scaffold material for meniscus implants. Scaffolds seeded with 3T6 fibroblasts were cultivated with mechanical stimulation in a compression bioreactor for enhanced collagen production. Constructs under dynamic compression at a frequency of 0.1 Hz and compression strain of 5% were compared to static cultures used as controls. The three-dimensional distributions of collagen fibers and fibroblasts in the cellulose scaffolds were studied under native, soft-matter conditions by combined second harmonic generation and coherent antiStokes Raman scattering microscopy, requiring no artificial sample preparation. Results showed that the micro-channels facilitated the alignment of cells and collagen fibers and that collagen production was enhanced by mechanical stimulation. Thus, cell-seeded, micro-channeled cellulose scaffolds provided guided tissue growth required to obtain an ultrastructure mimicking that of the meniscus.


Subject(s)
Cellulose/metabolism , Collagen/metabolism , Bioreactors , Fibroblasts/chemistry , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...