Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Rev Geophys ; 58(4): e2019RG000678, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33015673

ABSTRACT

We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6-3.9 K for our Baseline calculation and remains within 2.3-4.5 K under the robustness tests; corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.

2.
Nature ; 410(6828): 570-4, 2001 Mar 29.
Article in English | MEDLINE | ID: mdl-11279492

ABSTRACT

According to Milankovitch theory, the lower summer insolation at high latitudes about 115,000 years ago allowed winter snow to persist throughout summer, leading to ice-sheet build-up and glaciation. But attempts to simulate the last glaciation using global atmospheric models have failed to produce this outcome when forced by insolation changes only. These results point towards the importance of feedback effects-for example, through changes in vegetation or the ocean circulation-for the amplification of solar forcing. Here we present a fully coupled ocean-atmosphere model of the last glaciation that produces a build-up of perennial snow cover at known locations of ice sheets during this period. We show that ocean feedbacks lead to a cooling of the high northern latitudes, along with an increase in atmospheric moisture transport from the Equator to the poles. These changes agree with available geological data and, together, they lead to an increased delivery of snow to high northern latitudes. The mechanism we present explains the onset of glaciation-which would be amplified by changes in vegetation-in response to weak orbital forcing.

SELECTION OF CITATIONS
SEARCH DETAIL
...