Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 6(1): 201, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898711

ABSTRACT

Focused cardiac ultrasound (FoCUS) is becoming standard practice in a wide spectrum of clinical settings. There is limited data evaluating the real-world use of FoCUS with artificial intelligence (AI). Our objective was to determine the accuracy of FoCUS AI-assisted left ventricular ejection fraction (LVEF) assessment and compare its accuracy between novice and experienced users. In this prospective, multicentre study, participants requiring a transthoracic echocardiogram (TTE) were recruited to have a FoCUS done by a novice or experienced user. The AI-assisted device calculated LVEF at the bedside, which was subsequently compared to TTE. 449 participants were enrolled with 424 studies included in the final analysis. The overall intraclass coefficient was 0.904, and 0.921 in the novice (n = 208) and 0.845 in the experienced (n = 216) cohorts. There was a significant bias of 0.73% towards TTE (p = 0.005) with a level of agreement of 11.2%. Categorical grading of LVEF severity had excellent agreement to TTE (weighted kappa = 0.83). The area under the curve (AUC) was 0.98 for identifying an abnormal LVEF (<50%) with a sensitivity of 92.8%, specificity of 92.3%, negative predictive value (NPV) of 0.97 and a positive predictive value (PPV) of 0.83. In identifying severe dysfunction (<30%) the AUC was 0.99 with a sensitivity of 78.1%, specificity of 98.0%, NPV of 0.98 and PPV of 0.76. Here we report that FoCUS AI-assisted LVEF assessments provide highly reproducible LVEF estimations in comparison to formal TTE. This finding was consistent among senior and novice echocardiographers suggesting applicability in a variety of clinical settings.

2.
Nat Med ; 29(2): 458-466, 2023 02.
Article in English | MEDLINE | ID: mdl-36702949

ABSTRACT

While BRAF inhibitor combinations with EGFR and/or MEK inhibitors have improved clinical efficacy in BRAFV600E colorectal cancer (CRC), response rates remain low and lack durability. Preclinical data suggest that BRAF/MAPK pathway inhibition may augment the tumor immune response. We performed a proof-of-concept single-arm phase 2 clinical trial of combined PD-1, BRAF and MEK inhibition with sparatlizumab (PDR001), dabrafenib and trametinib in 37 patients with BRAFV600E CRC. The primary end point was overall response rate, and the secondary end points were progression-free survival, disease control rate, duration of response and overall survival. The study met its primary end point with a confirmed response rate (24.3% in all patients; 25% in microsatellite stable patients) and durability that were favorable relative to historical controls of BRAF-targeted combinations alone. Single-cell RNA sequencing of 23 paired pretreatment and day 15 on-treatment tumor biopsies revealed greater induction of tumor cell-intrinsic immune programs and more complete MAPK inhibition in patients with better clinical outcome. Immune program induction in matched patient-derived organoids correlated with the degree of MAPK inhibition. These data suggest a potential tumor cell-intrinsic mechanism of cooperativity between MAPK inhibition and immune response, warranting further clinical evaluation of optimized targeted and immune combinations in CRC. ClinicalTrials.gov registration: NCT03668431.


Subject(s)
Colorectal Neoplasms , Melanoma , Humans , Proto-Oncogene Proteins B-raf/genetics , Programmed Cell Death 1 Receptor/genetics , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases/genetics , Colorectal Neoplasms/genetics , Mutation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Protein Kinase Inhibitors/pharmacology
3.
Genes Dev ; 32(17-18): 1201-1214, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30143526

ABSTRACT

The architectural and biochemical features of the plasma membrane are governed by its intimate association with the underlying cortical cytoskeleton. The neurofibromatosis type 2 (NF2) tumor suppressor merlin and closely related membrane:cytoskeleton-linking protein ezrin organize the membrane:cytoskeleton interface, a critical cellular compartment that both regulates and is regulated by growth factor receptors. An example of this poorly understood interrelationship is macropinocytosis, an ancient process of nutrient uptake and membrane remodeling that can both be triggered by growth factors and manage receptor availability. We show that merlin deficiency primes the membrane:cytoskeleton interface for epidermal growth factor (EGF)-induced macropinocytosis via a mechanism involving increased cortical ezrin, altered actomyosin, and stabilized cholesterol-rich membranes. These changes profoundly alter EGF receptor (EGFR) trafficking in merlin-deficient cells, favoring increased membrane levels of its heterodimerization partner, ErbB2; clathrin-independent internalization; and recycling. Our work suggests that, unlike Ras transformed cells, merlin-deficient cells do not depend on macropinocytic protein scavenging and instead exploit macropinocytosis for receptor recycling. Finally, we provide evidence that the macropinocytic proficiency of NF2-deficient cells can be used for therapeutic uptake. This work provides new insight into fundamental mechanisms of macropinocytic uptake and processing and suggests new ways to interfere with or exploit macropinocytosis in NF2 mutant and other tumors.


Subject(s)
Cell Membrane/metabolism , Epidermal Growth Factor/physiology , ErbB Receptors/metabolism , Neurofibromin 2/physiology , Pinocytosis , Actomyosin/metabolism , Animals , Cells, Cultured , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Humans , Mice , Neurofibromin 2/genetics , Protein Biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...