Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Acta Biomater ; 96: 400-411, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31254684

ABSTRACT

Understanding the cracking behaviour of biological composite materials is of practical importance. This paper presents the first study to track the interplay between crack initiation, microfracture and plastic deformation in three dimensions (3D) as a function of tubule and collagen fibril arrangement in elephant dentin using in situ X-ray nano-computed tomography (nano-CT). A nano-indenter with a conical tip has been used to incrementally indent three test-pieces oriented at 0°, 45° and 70° to the long axis of the tubules (i.e. radial to the tusk). For the 0° sample two significant cracks formed, one of which linked up with microcracks in the axial-radial plane of the tusk originating from the tubules and the other one occurred as a consequence of shear deformation at the tubules. The 70° test-piece was able to bear the greatest loads despite many small cracks forming around the indenter. These were diverted by the microstructure and did not propagate significantly. The 45° test-piece showed intermediate behaviour. In all cases strains obtained by digital volume correlation were well in excess of the yield strain (0.9%), indeed some plastic deformation could even be seen through bending of the tubules. The hoop strains around the conical indenter were anisotropic with the smallest strains correlating with the primary collagen orientation (axial to the tusk) and the largest strains aligned with the hoop direction of the tusk. STATEMENT OF SIGNIFICANCE: This paper presents the first comprehensive study of the anisotropic nature of microfracture, crack propagation and deformation in elephant dentin using time-lapse X-ray nano-computed tomography. To unravel the interplay of collagen fibrils and local deformation, digital volume correlation (DVC) has been applied to map the local strain field while the crack initiation and propagation is tracked in real time. Our results highlight the intrinsic and extrinsic shielding mechanisms and correlate the crack growth behavior in nature to the service requirement of dentin to resist catastrophic fracture. This is of wide interest not just in terms of understanding dentin fracture but also can extend beyond dentin to other anisotropic structural composite biomaterials such as bone, antler and chitin.


Subject(s)
Dentin/diagnostic imaging , Four-Dimensional Computed Tomography , Nanotechnology , Stress, Mechanical , Animals , Anisotropy , Compressive Strength , Elephants , Imaging, Three-Dimensional , Time-Lapse Imaging , X-Rays
2.
Theranostics ; 8(21): 6038-6052, 2018.
Article in English | MEDLINE | ID: mdl-30613281

ABSTRACT

Aortic wall remodelling is a key feature of both ageing and genetic connective tissue diseases, which are associated with vasculopathies such as Marfan syndrome (MFS). Although the aorta is a 3D structure, little attention has been paid to volumetric assessment, primarily due to the limitations of conventional imaging techniques. Phase-contrast microCT is an emerging imaging technique, which is able to resolve the 3D micro-scale structure of large samples without the need for staining or sectioning. Methods: Here, we have used synchrotron-based phase-contrast microCT to image aortae of wild type (WT) and MFS Fbn1C1039G/+ mice aged 3, 6 and 9 months old (n=5). We have also developed a new computational approach to automatically measure key histological parameters. Results: This analysis revealed that WT mice undergo age-dependent aortic remodelling characterised by increases in ascending aorta diameter, tunica media thickness and cross-sectional area. The MFS aortic wall was subject to comparable remodelling, but the magnitudes of the changes were significantly exacerbated, particularly in 9 month-old MFS mice with ascending aorta wall dilations. Moreover, this morphological remodelling in MFS aorta included internal elastic lamina surface breaks that extended throughout the MFS ascending aorta and were already evident in animals who had not yet developed aneurysms. Conclusions: Our 3D microCT study of the sub-micron wall structure of whole, intact aorta reveals that histological remodelling of the tunica media in MFS could be viewed as an accelerated ageing process, and that phase-contrast microCT combined with computational image analysis allows the visualisation and quantification of 3D morphological remodelling in large volumes of unstained vascular tissues.


Subject(s)
Aging/pathology , Aorta/diagnostic imaging , Aorta/pathology , Marfan Syndrome/pathology , X-Ray Microtomography/methods , Animals , Cross-Sectional Studies , Disease Models, Animal , Imaging, Three-Dimensional , Mice , Microscopy, Phase-Contrast/methods
3.
Sci Rep ; 7(1): 4144, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28646147

ABSTRACT

Experimental methods that allow examination of the intact vascular network of large organs, such as the human placenta are limited, preventing adequate comparison of normal and abnormal vascular development in pregnancy disease. Our aims were (i) to devise an effective technique for three-dimensional analyses of human placental vessels; (ii) demonstrate the utility of the technique in the comparison of placental vessel networks in normal and fetal growth restriction (FGR) complicated pregnancies. Radiopaque plastic vessel networks of normal and FGR placentas (n = 12/group) were created by filling the vessels with resin and corroding the surrounding tissues. Subsequently, each model was scanned in a microCT scanner, reconstructed into three-dimensional virtual objects and analysed in visualisation programmes. MicroCT imaging of the models defined vessel anatomy to our analyses threshold of 100 µm diameter. Median vessel length density was significantly shorter in arterial but longer in venous FGR networks compared to normals. No significant differences were demonstrable in arterial or venous tortuosity, diameter or branch density. This study demonstrates the potential effectiveness of microCT for ex-vivo examination of human placental vessel morphology. Our findings show significant discrepancies in vessel length density in FGR placentas. The effects on fetoplacental blood flow, and hence nutrient transfer to the fetus, are unknown.


Subject(s)
Placenta/blood supply , Placenta/diagnostic imaging , X-Ray Microtomography , Adult , Biometry , Female , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Placenta/anatomy & histology , Placenta/pathology , Pregnancy , Pregnancy Complications/diagnostic imaging , Pregnancy Complications/pathology , X-Ray Microtomography/methods , Young Adult
4.
Macromol Biosci ; 17(2)2017 02.
Article in English | MEDLINE | ID: mdl-27634289

ABSTRACT

Here, it is demonstrated that X-ray nanotomography with Zernike phase contrast can be used for 3D imaging of cells grown on electrospun polymer scaffolds. The scaffold fibers and cells are simultaneously imaged, enabling the influence of scaffold architecture on cell location and morphology to be studied. The high resolution enables subcellular details to be revealed. The X-ray imaging conditions were optimized to reduce scan times, making it feasible to scan multiple regions of interest in relatively large samples. An image processing procedure is presented which enables scaffold characteristics and cell location to be quantified. The procedure is demonstrated by comparing the ingrowth of cells after culture for 3 and 6 days.


Subject(s)
Fibroblasts/cytology , Nanotechnology/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Cell Proliferation , Humans , Imaging, Three-Dimensional , X-Rays
5.
J Cell Sci ; 129(13): 2483-92, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27278017

ABSTRACT

Whereas the two-dimensional (2D) visualisation of biological samples is routine, three-dimensional (3D) imaging remains a time-consuming and relatively specialised pursuit. Current commonly adopted techniques for characterising the 3D structure of non-calcified tissues and biomaterials include optical and electron microscopy of serial sections and sectioned block faces, and the visualisation of intact samples by confocal microscopy or electron tomography. As an alternative to these approaches, X-ray computed micro-tomography (microCT) can both rapidly image the internal 3D structure of macroscopic volumes at sub-micron resolutions and visualise dynamic changes in living tissues at a microsecond scale. In this Commentary, we discuss the history and current capabilities of microCT. To that end, we present four case studies to illustrate the ability of microCT to visualise and quantify: (1) pressure-induced changes in the internal structure of unstained rat arteries, (2) the differential morphology of stained collagen fascicles in tendon and ligament, (3) the development of Vanessa cardui chrysalises, and (4) the distribution of cells within a tissue-engineering construct. Future developments in detector design and the use of synchrotron X-ray sources might enable real-time 3D imaging of dynamically remodelling biological samples.


Subject(s)
Imaging, Three-Dimensional , Synchrotrons , Tomography, X-Ray Computed , Arteries/diagnostic imaging , Arteries/ultrastructure , Collagen/isolation & purification , Collagen/ultrastructure , Humans , Ligaments/diagnostic imaging , Ligaments/ultrastructure , Microscopy, Confocal , Tendons/diagnostic imaging , Tendons/ultrastructure
6.
Comput Biol Med ; 72: 120-31, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27035863

ABSTRACT

Interconnected 3-D networks occur widely in biology and the geometry of such branched networks can be described by curve-skeletons, allowing parameters such as path lengths, path tortuosities and cross-sectional thicknesses to be quantified. However, curve-skeletons are typically sensitive to small scale surface features which may arise from noise in the imaging data. In this paper, new post-processing techniques for curve-skeletons are presented which ensure that measurements of lengths and thicknesses are less sensitive to these small scale surface features. The techniques achieve sub-voxel accuracy and are based on a minimal sphere-network representation in which the object is modelled as a string of minimally overlapping spheres, and as such samples the object on a scale related to the local thickness. A new measure of cross-sectional dimension termed the modal radius is defined and shown to be more robust in comparison with the standard measure (the internal radius), while retaining the desirable feature of capturing the size of structures in terms of a single measure. The techniques are demonstrated by application to trabecular bone and tumour vascular network case studies where the volumetric data was obtained by high resolution computed tomography.


Subject(s)
Tomography, X-Ray Computed/methods , Reproducibility of Results
7.
Sci Rep ; 5: 10074, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25975937

ABSTRACT

Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.


Subject(s)
Adventitia/cytology , Arteries/cytology , Dermis/cytology , Epidermal Cells , Imaging, Three-Dimensional/methods , Adventitia/anatomy & histology , Animals , Arteries/anatomy & histology , Contrast Media , Dermis/anatomy & histology , Epidermis/anatomy & histology , Extracellular Matrix/physiology , Humans , Male , Rats , Rats, Wistar , Tomography, X-Ray Computed/methods
8.
J R Soc Interface ; 10(84): 20130304, 2013 Jul 06.
Article in English | MEDLINE | ID: mdl-23676900

ABSTRACT

Studies of model insects have greatly increased our understanding of animal development. Yet, they are limited in scope to this small pool of model species: a small number of representatives for a hyperdiverse group with highly varied developmental processes. One factor behind this narrow scope is the challenging nature of traditional methods of study, such as histology and dissection, which can preclude quantitative analysis and do not allow the development of a single individual to be followed. Here, we use high-resolution X-ray computed tomography (CT) to overcome these issues, and three-dimensionally image numerous lepidopteran pupae throughout their development. The resulting models are presented in the electronic supplementary material, as are figures and videos, documenting a single individual throughout development. They provide new insight and details of lepidopteran metamorphosis, and allow the measurement of tracheal and gut volume. Furthermore, this study demonstrates early and rapid development of the tracheae, which become visible in scans just 12 h after pupation. This suggests that there is less remodelling of the tracheal system than previously expected, and is methodologically important because the tracheal system is an often-understudied character system in development. In the future, this form of time-lapse CT-scanning could allow faster and more detailed developmental studies on a wider range of taxa than is presently possible.


Subject(s)
Butterflies/anatomy & histology , Growth and Development/physiology , Imaging, Three-Dimensional/methods , Metamorphosis, Biological/physiology , Pupa/ultrastructure , Time-Lapse Imaging/methods , Tomography, X-Ray Computed/methods , Animals , Butterflies/physiology , Digestive System/growth & development , Digestive System/ultrastructure , Respiratory System/growth & development , Respiratory System/ultrastructure
9.
PLoS One ; 7(10): e47651, 2012.
Article in English | MEDLINE | ID: mdl-23082186

ABSTRACT

X-ray computed tomography is used to identify a unique example of fossilized phoresy in 16 million-year-old Miocene Dominican amber involving a springtail being transported by a mayfly. It represents the first evidence (fossil or extant) of phoresy in adult Ephemeroptera and only the second record in Collembola (the first is also preserved in amber). This is the first record of Collembola using winged insects for dispersal. This fossil predicts the occurrence of similar behaviour in living springtails and helps explain the global distribution of Collembola today.


Subject(s)
Amber , Arthropods/physiology , Fossils , Insecta/physiology , Symbiosis/physiology , Animals
10.
Microvasc Res ; 84(3): 323-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22921880

ABSTRACT

Vessel size index (R(v), µm) has been proposed as a quantitative magnetic resonance imaging (MRI) derived imaging biomarker in oncology, for the non-invasive assessment of tumour blood vessel architecture and vascular targeted therapies. Appropriate pre-clinical evaluation of R(v) in animal tumour models will improve the interpretation and guide the introduction of the biomarker into clinical studies. The objective of this study was to compare R(v) measured in vivo with vessel size measurements from high-resolution X-ray computed tomography (µCT) of vascular corrosion casts measured post mortem from the same tumours, with and without vascular targeted therapy. MRI measurements were first acquired from subcutaneous SW1222 colorectal xenografts in mice following treatment with 0 (n=6), 30 (n=6) or 200 mg/kg (n=3) of the vascular disrupting agent ZD6126. The mice were then immediately infused with a low viscosity resin and, following polymerisation and maceration of surrounding tissues, the resulting tumour vascular casts were dissected and subsequently imaged using an optimised µCT imaging approach. Vessel diameters were not measurable by µCT in the 200 mg/kg group as the high dose of ZD6126 precluded delivery of the resin to the tumour vascular bed. The mean R(v) for the three treatment groups was 24, 23 and 23.5 µm respectively; the corresponding µCT measurements from corrosion casts from the 0 and 30 mg/kg cohorts were 25 and 28 µm. The strong association between the in vivo MRI and post mortem µCT values supports the use of R(v) as an imaging biomarker in clinical trials of investigational vascular targeted therapies.


Subject(s)
Corrosion Casting/methods , Magnetic Resonance Imaging/methods , Animals , Biomarkers/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Organophosphorus Compounds/pharmacology , Time Factors , Tomography, X-Ray Computed/methods , X-Ray Microtomography/methods
11.
Biol Lett ; 8(3): 457-60, 2012 Jun 23.
Article in English | MEDLINE | ID: mdl-22072283

ABSTRACT

High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44-49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers.


Subject(s)
Acari/anatomy & histology , Acari/classification , Fossils , Paleontology/methods , Acari/physiology , Amber/chemistry , Animals , Biological Evolution , Phylogeny , Spiders/anatomy & histology , Spiders/physiology , Symbiosis , Tomography, X-Ray Computed
12.
Naturwissenschaften ; 98(6): 519-27, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21528355

ABSTRACT

Computed tomography (CT) methods were applied to a problematic fossil spider (Arachnida: Araneae) from the historical Berendt collection of Eocene (ca. 44-49 Ma) Baltic amber. The original specimens of Ocypete crassipes Koch and Berendt 1854 are in dark, oxidised amber and the published descriptions lack detail. Despite this, they were subsequently assigned to the living Pantropical genus Heteropoda Latreille, 1804 and are ostensibly the oldest records of huntsman spiders (Sparassidae) in general. Given their normally large size, and presumptive ability to free themselves more easily from resin, it would be surprising to find a sparassid in amber and traditional (optical) methods of study would likely have left O. crassipes as an equivocal record--probably a nomen dubium. However, phase contrast enhanced X-ray CT revealed exquisite morphological detail and thus 'saved' this historical name by revealing characters which confirm that it's a bona fide member both of Sparassidae and the subfamily Eusparassinae. We demonstrate here that CT studies facilitate taxonomic equivalence even between recent spiders and unpromising fossils described in older monographs. In our case, fine structural details such as eye arrangement, cheliceral dentition, and leg characters like a trilobate membrane, spination and claws, allow a precise referral of this fossil to an extant genus as Eusparassus crassipes (Koch and Berendt 1854) comb. nov.


Subject(s)
Amber/chemistry , Fossils , Paleontology/methods , Spiders/anatomy & histology , Spiders/classification , Animals , Tomography, X-Ray Computed
13.
J R Soc Interface ; 3(6): 1-13, 2006 Feb 22.
Article in English | MEDLINE | ID: mdl-16849213

ABSTRACT

Fluorescence intensity measurements have the potential to facilitate the diagnoses of many pathological conditions. However, accurate interpretation of the measurements is complicated by the distorting effects of tissue scattering and absorption. Consequently, different techniques have been developed to attempt to compensate for these effects. This paper reviews currently available correction techniques with emphasis on clinical application and consideration given to the intrinsic accuracy and limitations of each technique.


Subject(s)
Algorithms , Artifacts , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Spectrometry, Fluorescence/methods , Animals , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...