Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
NPJ Breast Cancer ; 9(1): 64, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543694

ABSTRACT

Combining the selective AKT inhibitor, capivasertib, and SERD, fulvestrant improved PFS in a Phase III clinical trial (CAPItello-291), treating HR+ breast cancer patients following aromatase inhibitors, with or without CDK4/6 inhibitors. However, clinical data suggests CDK4/6 treatment may reduce response to subsequent monotherapy endocrine treatment. To support understanding of trials such as CAPItello-291 and gain insight into this emerging population of patients, we explored how CDK4/6 inhibitor treatment influences ER+ breast tumour cell function and response to fulvestrant and capivasertib after CDK4/6 inhibitor treatment. In RB+, RB- T47D and MCF7 palbociclib-resistant cells ER pathway ER and Greb-1 expression were reduced versus naïve cells. PI3K-AKT pathway activation was also modified in RB+ cells, with capivasertib less effective at reducing pS6 in RB+ cells compared to parental cells. Expression profiling of parental versus palbociclib-resistant cells confirmed capivasertib, fulvestrant and the combination differentially impacted gene expression modulation in resistant cells, with different responses seen in T47D and MCF7 cells. Fulvestrant inhibition of ER-dependent genes was reduced. In resistant cells, the combination was less effective at reducing cell cycle genes, but a consistent reduction in cell fraction in S-phase was observed in naïve and resistant cells. Despite modified signalling responses, both RB+ and RB- resistant cells responded to combination treatment despite some reduction in relative efficacy and was effective in vivo in palbociclib-resistant PDX models. Collectively these findings demonstrate that simultaneous inhibition of AKT and ER signalling can be effective in models representing palbociclib resistance despite changes in pathway dependency.

4.
Cell Rep ; 30(6): 2040-2054.e5, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049030

ABSTRACT

Alzheimer's disease (AD) is associated with the intracellular aggregation of hyperphosphorylated tau and the accumulation of ß-amyloid in the neocortex. We use transgenic mice harboring human tau (rTg4510) and amyloid precursor protein (J20) mutations to investigate transcriptional changes associated with the progression of tau and amyloid pathology. rTg4510 mice are characterized by widespread transcriptional differences in the entorhinal cortex with changes paralleling neuropathological burden across multiple brain regions. Differentially expressed transcripts overlap with genes identified in genetic studies of familial and sporadic AD. Systems-level analyses identify discrete co-expression networks associated with the progressive accumulation of tau that are enriched for genes and pathways previously implicated in AD pathology and overlap with co-expression networks identified in human AD cortex. Our data provide further evidence for an immune-response component in the accumulation of tau and reveal molecular pathways associated with the progression of AD neuropathology.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/adverse effects , tau Proteins/adverse effects , Animals , Disease Models, Animal , Disease Progression , Humans , Mice , Mice, Transgenic
5.
Biochim Biophys Acta ; 1813(2): 340-5, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21145356

ABSTRACT

Recent data suggest that the adhesion docking protein NEDD9/HEF1/Cas-L is a critical regulator of adhesion-dependent signalling pathways during mammary tumour development. Multiple phosphorylation modifications of NEDD9 regulate interaction with downstream protein partners, thus the regulation of NEDD9 phospho-forms is an important point of control for NEDD9 function. As estradiol (E2) plays a central role in the development and progression of breast cancer, we have investigated NEDD9 phospho-form regulation in MCF-7 estrogen receptor (ER)-positive breast cancer cells in response to estrogen. We find that levels of the 105-kDa NEDD9 phospho-form are significantly increased after 3days of estrogen exposure, and this is suppressed by the anti-estrogen tamoxifen. Analysis of protein decay kinetics following treatment with the protein synthesis inhibitor cycloheximide indicates that increased 105-kDa levels are due to a slower rate of protein decay. Moreover, exogenous expression of NEDD9 failed to induce spreading in the presence of E2, and this was reversed by tamoxifen treatment. Finally, we show that the 105-kDa NEDD9 phospho-form appears to predominate in ER-positive versus ER-negative breast cancer cell lines. Taken together, our results suggest that estradiol may suppress phospho-form-specific functions of NEDD9.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement/drug effects , Estradiol/pharmacology , Phosphoproteins/metabolism , Antineoplastic Agents, Hormonal/pharmacology , Blotting, Western , Breast Neoplasms/drug therapy , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Female , Humans , Phosphorylation/drug effects , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Tamoxifen/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...