Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Environ Res ; 257: 119274, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821456

ABSTRACT

Bracken fern (Pteridium spp.) is a highly problematic plant worldwide due to its toxicity in combination with invasive properties on former farmland, in deforested areas and on disturbed natural habitats. The carcinogenic potential of bracken ferns has caused scientific and public concern for six decades. Its genotoxic effects are linked to illudane-type glycosides (ITGs), their aglycons and derivatives. Ptaquiloside is considered the dominating ITG, but with significant contributions from other ITGs. The present review aims to compile evidence regarding environmental pollution by bracken fern ITGs, in the context of their human and animal health implications. The ITG content in bracken fern exhibits substantial spatial, temporal, and chemotaxonomic variation. Consumption of bracken fern as food is linked to human gastric cancer but also causes urinary bladder cancers in bovines browsing on bracken. Genotoxic metabolites are found in milk and meat from bracken fed animals. ITG exposure may also take place via contaminated water with recent data pointing to concentrations at microgram/L-level following rain events. Airborne ITG-exposure from spores and dust has also been documented. ITGs may synergize with major biological and environmental carcinogens like papillomaviruses and Helicobacter pylori to induce cancer, revealing novel instances of chemical and biological co-carcinogenesis. Thus, the emerging landscape from six decades of bracken research points towards a global environmental problem with increasingly complex health implications.

2.
BMJ Open ; 14(3): e081455, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38508633

ABSTRACT

INTRODUCTION: SCALE-UP II aims to investigate the effectiveness of population health management interventions using text messaging (TM), chatbots and patient navigation (PN) in increasing the uptake of at-home COVID-19 testing among patients in historically marginalised communities, specifically, those receiving care at community health centres (CHCs). METHODS AND ANALYSIS: The trial is a multisite, randomised pragmatic clinical trial. Eligible patients are >18 years old with a primary care visit in the last 3 years at one of the participating CHCs. Demographic data will be obtained from CHC electronic health records. Patients will be randomised to one of two factorial designs based on smartphone ownership. Patients who self-report replying to a text message that they have a smartphone will be randomised in a 2×2×2 factorial fashion to receive (1) chatbot or TM; (2) PN (yes or no); and (3) repeated offers to interact with the interventions every 10 or 30 days. Participants who do not self-report as having a smartphone will be randomised in a 2×2 factorial fashion to receive (1) TM with or without PN; and (2) repeated offers every 10 or 30 days. The interventions will be sent in English or Spanish, with an option to request at-home COVID-19 test kits. The primary outcome is the proportion of participants using at-home COVID-19 tests during a 90-day follow-up. The study will evaluate the main effects and interactions among interventions, implementation outcomes and predictors and moderators of study outcomes. Statistical analyses will include logistic regression, stratified subgroup analyses and adjustment for stratification factors. ETHICS AND DISSEMINATION: The protocol was approved by the University of Utah Institutional Review Board. On completion, study data will be made available in compliance with National Institutes of Health data sharing policies. Results will be disseminated through study partners and peer-reviewed publications. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov: NCT05533918 and NCT05533359.


Subject(s)
COVID-19 , Population Health Management , Adolescent , Humans , Community Health Centers , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Randomized Controlled Trials as Topic , SARS-CoV-2 , United States , Pragmatic Clinical Trials as Topic
3.
J Biomed Inform ; 149: 104568, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081564

ABSTRACT

OBJECTIVE: This study aimed to 1) investigate algorithm enhancements for identifying patients eligible for genetic testing of hereditary cancer syndromes using family history data from electronic health records (EHRs); and 2) assess their impact on relative differences across sex, race, ethnicity, and language preference. MATERIALS AND METHODS: The study used EHR data from a tertiary academic medical center. A baseline rule-base algorithm, relying on structured family history data (structured data; SD), was enhanced using a natural language processing (NLP) component and a relaxed criteria algorithm (partial match [PM]). The identification rates and differences were analyzed considering sex, race, ethnicity, and language preference. RESULTS: Among 120,007 patients aged 25-60, detection rate differences were found across all groups using the SD (all P < 0.001). Both enhancements increased identification rates; NLP led to a 1.9 % increase and the relaxed criteria algorithm (PM) led to an 18.5 % increase (both P < 0.001). Combining SD with NLP and PM yielded a 20.4 % increase (P < 0.001). Similar increases were observed within subgroups. Relative differences persisted across most categories for the enhanced algorithms, with disproportionately higher identification of patients who are White, Female, non-Hispanic, and whose preferred language is English. CONCLUSION: Algorithm enhancements increased identification rates for patients eligible for genetic testing of hereditary cancer syndromes, regardless of sex, race, ethnicity, and language preference. However, differences in identification rates persisted, emphasizing the need for additional strategies to reduce disparities such as addressing underlying biases in EHR family health information and selectively applying algorithm enhancements for disadvantaged populations. Systematic assessment of differences in algorithm performance across population subgroups should be incorporated into algorithm development processes.


Subject(s)
Algorithms , Neoplastic Syndromes, Hereditary , Humans , Female , Genetic Testing , Electronic Health Records , Natural Language Processing
4.
BMJ Open ; 13(11): e075157, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38011967

ABSTRACT

INTRODUCTION: Over 40% of US adults meet criteria for obesity, a major risk factor for chronic disease. Obesity disproportionately impacts populations that have been historically marginalised (eg, low socioeconomic status, rural, some racial/ethnic minority groups). Evidence-based interventions (EBIs) for weight management exist but reach less than 3% of eligible individuals. The aims of this pilot randomised controlled trial are to evaluate feasibility and acceptability of dissemination strategies designed to increase reach of EBIs for weight management. METHODS AND ANALYSIS: This study is a two-phase, Sequential Multiple Assignment Randomized Trial, conducted with 200 Medicaid patients. In phase 1, patients will be individually randomised to single text message (TM1) or multiple text messages (TM+). Phase 2 is based on treatment response. Patients who enrol in the EBI within 12 weeks of exposure to phase 1 (ie, responders) receive no further interventions. Patients in TM1 who do not enrol in the EBI within 12 weeks of exposure (ie, TM1 non-responders) will be randomised to either TM1-Continued (ie, no further TM) or TM1 & MAPS (ie, no further TM, up to 2 Motivation And Problem Solving (MAPS) navigation calls) over the next 12 weeks. Patients in TM+ who do not enrol in the EBI (ie, TM+ non-responders) will be randomised to either TM+Continued (ie, monthly text messages) or TM+ & MAPS (ie, monthly text messages, plus up to 2 MAPS calls) over the next 12 weeks. Descriptive statistics will be used to characterise feasibility (eg, proportion of patients eligible, contacted and enrolled in the trial) and acceptability (eg, participant opt-out, participant engagement with dissemination strategies, EBI reach (ie, the proportion of participants who enrol in EBI), adherence, effectiveness). ETHICS AND DISSEMINATION: Study protocol was approved by the University of Utah Institutional Review Board (#00139694). Results will be disseminated through study partners and peer-reviewed publications. TRIAL REGISTRATION NUMBER: clinicaltrials.gov; NCT05666323.


Subject(s)
Diabetes Mellitus , Ethnicity , Adult , Humans , Medicaid , Minority Groups , Obesity/prevention & control , Evidence-Based Medicine , Pilot Projects , Randomized Controlled Trials as Topic
5.
ArXiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37332562

ABSTRACT

Software is vital for the advancement of biology and medicine. Through analysis of usage and impact metrics of software, developers can help determine user and community engagement. These metrics can be used to justify additional funding, encourage additional use, and identify unanticipated use cases. Such analyses can help define improvement areas and assist with managing project resources. However, there are challenges associated with assessing usage and impact, many of which vary widely depending on the type of software being evaluated. These challenges involve issues of distorted, exaggerated, understated, or misleading metrics, as well as ethical and security concerns. More attention to the nuances, challenges, and considerations involved in capturing impact across the diverse spectrum of biological software is needed. Furthermore, some tools may be especially beneficial to a small audience, yet may not have comparatively compelling metrics of high usage. Although some principles are generally applicable, there is not a single perfect metric or approach to effectively evaluate a software tool's impact, as this depends on aspects unique to each tool, how it is used, and how one wishes to evaluate engagement. We propose more broadly applicable guidelines (such as infrastructure that supports the usage of software and the collection of metrics about usage), as well as strategies for various types of software and resources. We also highlight outstanding issues in the field regarding how communities measure or evaluate software impact. To gain a deeper understanding of the issues hindering software evaluations, as well as to determine what appears to be helpful, we performed a survey of participants involved with scientific software projects for the Informatics Technology for Cancer Research (ITCR) program funded by the National Cancer Institute (NCI). We also investigated software among this scientific community and others to assess how often infrastructure that supports such evaluations is implemented and how this impacts rates of papers describing usage of the software. We find that although developers recognize the utility of analyzing data related to the impact or usage of their software, they struggle to find the time or funding to support such analyses. We also find that infrastructure such as social media presence, more in-depth documentation, the presence of software health metrics, and clear information on how to contact developers seem to be associated with increased usage rates. Our findings can help scientific software developers make the most out of the evaluations of their software so that they can more fully benefit from such assessments.

6.
Transl Behav Med ; 13(6): 389-399, 2023 06 09.
Article in English | MEDLINE | ID: mdl-36999823

ABSTRACT

Racial/ethnic minority, low socioeconomic status, and rural populations are disproportionately affected by COVID-19. Developing and evaluating interventions to address COVID-19 testing and vaccination among these populations are crucial to improving health inequities. The purpose of this paper is to describe the application of a rapid-cycle design and adaptation process from an ongoing trial to address COVID-19 among safety-net healthcare system patients. The rapid-cycle design and adaptation process included: (a) assessing context and determining relevant models/frameworks; (b) determining core and modifiable components of interventions; and (c) conducting iterative adaptations using Plan-Do-Study-Act (PDSA) cycles. PDSA cycles included: Plan. Gather information from potential adopters/implementers (e.g., Community Health Center [CHC] staff/patients) and design initial interventions; Do. Implement interventions in single CHC or patient cohort; Study. Examine process, outcome, and context data (e.g., infection rates); and, Act. If necessary, refine interventions based on process and outcome data, then disseminate interventions to other CHCs and patient cohorts. Seven CHC systems with 26 clinics participated in the trial. Rapid-cycle, PDSA-based adaptations were made to adapt to evolving COVID-19-related needs. Near real-time data used for adaptation included data on infection hot spots, CHC capacity, stakeholder priorities, local/national policies, and testing/vaccine availability. Adaptations included those to study design, intervention content, and intervention cohorts. Decision-making included multiple stakeholders (e.g., State Department of Health, Primary Care Association, CHCs, patients, researchers). Rapid-cycle designs may improve the relevance and timeliness of interventions for CHCs and other settings that provide care to populations experiencing health inequities, and for rapidly evolving healthcare challenges such as COVID-19.


Racial/ethnic minority, low socioeconomic status, and rural populations experience a disproportionate burden of COVID-19. Finding ways to address COVID-19 among these populations is crucial to improving health inequities. The purpose of this paper is to describe the rapid-cycle design process for a research project to address COVID-19 testing and vaccination among safety-net healthcare system patients. The project used real-time information on changes in COVID-19 policy (e.g., vaccination authorization), local case rates, and the capacity of safety-net healthcare systems to iteratively change interventions to ensure interventions were relevant and timely for patients. Key changes that were made to interventions included a change to the study design to include vaccination as a focus of the interventions after the vaccine was authorized; change in intervention content according to the capacity of local Community Health Centers to provide testing to patients; and changes to intervention cohorts such that priority groups of patients were selected for intervention based on characteristics including age, residency in an infection "hot spot," or race/ethnicity. Iteratively improving interventions based on real-time data collection may increase intervention relevance and timeliness, and rapid-cycle adaptions can be successfully implemented in resource constrained settings like safety-net healthcare systems.


Subject(s)
COVID-19 , Ethnicity , Humans , COVID-19 Testing , Minority Groups , COVID-19/prevention & control , Delivery of Health Care
7.
J Am Chem Soc ; 145(14): 7768-7779, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36976935

ABSTRACT

A yet unresolved challenge in structural biology is to quantify the conformational states of proteins underpinning function. This challenge is particularly acute for membrane proteins owing to the difficulties in stabilizing them for in vitro studies. To address this challenge, we present an integrative strategy that combines hydrogen deuterium exchange-mass spectrometry (HDX-MS) with ensemble modeling. We benchmark our strategy on wild-type and mutant conformers of XylE, a prototypical member of the ubiquitous Major Facilitator Superfamily (MFS) of transporters. Next, we apply our strategy to quantify conformational ensembles of XylE embedded in different lipid environments. Further application of our integrative strategy to substrate-bound and inhibitor-bound ensembles allowed us to unravel protein-ligand interactions contributing to the alternating access mechanism of secondary transport in atomistic detail. Overall, our study highlights the potential of integrative HDX-MS modeling to capture, accurately quantify, and subsequently visualize co-populated states of membrane proteins in association with mutations and diverse substrates and inhibitors.


Subject(s)
Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry , Deuterium Exchange Measurement/methods , Membrane Proteins/chemistry , Protein Conformation , Sugars
8.
Nat Commun ; 14(1): 1421, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36918534

ABSTRACT

SARS-CoV-2 spike glycoprotein mediates receptor binding and subsequent membrane fusion. It exists in a range of conformations, including a closed state unable to bind the ACE2 receptor, and an open state that does so but displays more exposed antigenic surface. Spikes of variants of concern (VOCs) acquired amino acid changes linked to increased virulence and immune evasion. Here, using HDX-MS, we identified changes in spike dynamics that we associate with the transition from closed to open conformations, to ACE2 binding, and to specific mutations in VOCs. We show that the RBD-associated subdomain plays a role in spike opening, whereas the NTD acts as a hotspot of conformational divergence of VOC spikes driving immune evasion. Alpha, beta and delta spikes assume predominantly open conformations and ACE2 binding increases the dynamics of their core helices, priming spikes for fusion. Conversely, substitutions in omicron spike lead to predominantly closed conformations, presumably enabling it to escape antibodies. At the same time, its core helices show characteristics of being pre-primed for fusion even in the absence of ACE2. These data inform on SARS-CoV-2 evolution and omicron variant emergence.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/genetics , Mutation
9.
Biophys J ; 122(3): 577-594, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36528790

ABSTRACT

Membrane transporters mediate the passage of molecules across membranes and are essential for cellular function. While the transmembrane region of these proteins is responsible for substrate transport, often the cytoplasmic regions are required for modulating their activity. However, it can be difficult to obtain atomic-resolution descriptions of these autoregulatory domains by classical structural biology techniques, especially if they lack a single, defined structure. The betaine permease, BetP, a homotrimer, is a prominent and well-studied example of a membrane protein whose autoregulation depends on cytoplasmic N- and C-terminal segments. These domains sense and transduce changes in K+ concentration and in lipid bilayer properties caused by osmotic stress. However, structural data for these terminal domains is incomplete, which hinders a clear description of the molecular mechanism of autoregulation. Here we used microsecond-scale molecular simulations of the BetP trimer to compare reported conformations of the 45-amino-acid long C-terminal tails. The simulations provide support for the idea that the conformation derived from electron microscopy (EM) data represents a more stable global orientation of the C-terminal segment under downregulating conditions while also providing a detailed molecular description of its dynamics and highlighting specific interactions with lipids, ions, and neighboring transporter subunits. A missing piece of the molecular puzzle is the N-terminal segment, whose dynamic nature has prevented structural characterization. Using Rosetta to generate ensembles of de novo conformations in the context of the EM-derived structure robustly identifies two features of the N-terminal tail, namely 1) short helical elements and 2) an orientation that would confine potential interactions to the protomer in the counterclockwise direction (viewed from the cytoplasm). Since each C-terminal tail only contacts the protomer in the clockwise direction, these results indicate an intricate interplay between the three protomers of BetP in the downregulated protein and a multidirectionality that may facilitate autoregulation of transport.


Subject(s)
Symporters , Protein Subunits/metabolism , Bacterial Proteins/chemistry , Models, Molecular , Membrane Proteins/metabolism , Homeostasis
10.
PEC Innov ; 12022 Dec.
Article in English | MEDLINE | ID: mdl-36532299

ABSTRACT

Objectives: Family history is an important tool for assessing disease risk, and tailoring recommendations for screening and genetic services referral. This study explored barriers to family history collection with Spanish-speaking patients. Methods: This qualitative study was conducted in two US healthcare systems. We conducted semi-structured interviews with medical assistants, physicians, and interpreters with experience collecting family history for Spanish-speaking patients. Results: The most common patient-level barrier was the perception that some Spanish-speaking patients had limited knowledge of family history. Interpersonal communication barriers related to dialectical differences and decisions about using formal interpreters vs. Spanish-speaking staff. Organizational barriers included time pressures related to using interpreters, and ad hoc workflow adaptations for Spanish-speaking patients that might leave gaps in family history collection. Conclusions: This study identified multi-level barriers to family history collection with Spanish-speaking patients in primary care. Findings suggest that a key priority to enhance communication would be to standardize processes for working with interpreters. Innovation: To improve communication with and care provided to Spanish-speaking patients, there is a need to increase healthcare provider awareness about implicit bias, to address ad hoc workflow adjustments within practice settings, to evaluate the need for professional interpreter services, and to improve digital tools to facilitate family history collection.

11.
JAMA Netw Open ; 5(10): e2234574, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36194411

ABSTRACT

Importance: Clinical decision support (CDS) algorithms are increasingly being implemented in health care systems to identify patients for specialty care. However, systematic differences in missingness of electronic health record (EHR) data may lead to disparities in identification by CDS algorithms. Objective: To examine the availability and comprehensiveness of cancer family history information (FHI) in patients' EHRs by sex, race, Hispanic or Latino ethnicity, and language preference in 2 large health care systems in 2021. Design, Setting, and Participants: This retrospective EHR quality improvement study used EHR data from 2 health care systems: University of Utah Health (UHealth) and NYU Langone Health (NYULH). Participants included patients aged 25 to 60 years who had a primary care appointment in the previous 3 years. Data were collected or abstracted from the EHR from December 10, 2020, to October 31, 2021, and analyzed from June 15 to October 31, 2021. Exposures: Prior collection of cancer FHI in primary care settings. Main Outcomes and Measures: Availability was defined as having any FHI and any cancer FHI in the EHR and was examined at the patient level. Comprehensiveness was defined as whether a cancer family history observation in the EHR specified the type of cancer diagnosed in a family member, the relationship of the family member to the patient, and the age at onset for the family member and was examined at the observation level. Results: Among 144 484 patients in the UHealth system, 53.6% were women; 74.4% were non-Hispanic or non-Latino and 67.6% were White; and 83.0% had an English language preference. Among 377 621 patients in the NYULH system, 55.3% were women; 63.2% were non-Hispanic or non-Latino, and 55.3% were White; and 89.9% had an English language preference. Patients from historically medically undeserved groups-specifically, Black vs White patients (UHealth: 17.3% [95% CI, 16.1%-18.6%] vs 42.8% [95% CI, 42.5%-43.1%]; NYULH: 24.4% [95% CI, 24.0%-24.8%] vs 33.8% [95% CI, 33.6%-34.0%]), Hispanic or Latino vs non-Hispanic or non-Latino patients (UHealth: 27.2% [95% CI, 26.5%-27.8%] vs 40.2% [95% CI, 39.9%-40.5%]; NYULH: 24.4% [95% CI, 24.1%-24.7%] vs 31.6% [95% CI, 31.4%-31.8%]), Spanish-speaking vs English-speaking patients (UHealth: 18.4% [95% CI, 17.2%-19.1%] vs 40.0% [95% CI, 39.7%-40.3%]; NYULH: 15.1% [95% CI, 14.6%-15.6%] vs 31.1% [95% CI, 30.9%-31.2%), and men vs women (UHealth: 30.8% [95% CI, 30.4%-31.2%] vs 43.0% [95% CI, 42.6%-43.3%]; NYULH: 23.1% [95% CI, 22.9%-23.3%] vs 34.9% [95% CI, 34.7%-35.1%])-had significantly lower availability and comprehensiveness of cancer FHI (P < .001). Conclusions and Relevance: These findings suggest that systematic differences in the availability and comprehensiveness of FHI in the EHR may introduce informative presence bias as inputs to CDS algorithms. The observed differences may also exacerbate disparities for medically underserved groups. System-, clinician-, and patient-level efforts are needed to improve the collection of FHI.


Subject(s)
Electronic Health Records , Neoplasms , Delivery of Health Care , Female , Hispanic or Latino , Humans , Language , Male , Retrospective Studies
13.
JMIR Med Inform ; 10(8): e37842, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35969459

ABSTRACT

BACKGROUND: Family health history has been recognized as an essential factor for cancer risk assessment and is an integral part of many cancer screening guidelines, including genetic testing for personalized clinical management strategies. However, manually identifying eligible candidates for genetic testing is labor intensive. OBJECTIVE: The aim of this study was to develop a natural language processing (NLP) pipeline and assess its contribution to identifying patients who meet genetic testing criteria for hereditary cancers based on family health history data in the electronic health record (EHR). We compared an algorithm that uses structured data alone with structured data augmented using NLP. METHODS: Algorithms were developed based on the National Comprehensive Cancer Network (NCCN) guidelines for genetic testing for hereditary breast, ovarian, pancreatic, and colorectal cancers. The NLP-augmented algorithm uses both structured family health history data and the associated unstructured free-text comments. The algorithms were compared with a reference standard of 100 patients with a family health history in the EHR. RESULTS: Regarding identifying the reference standard patients meeting the NCCN criteria, the NLP-augmented algorithm compared with the structured data algorithm yielded a significantly higher recall of 0.95 (95% CI 0.9-0.99) versus 0.29 (95% CI 0.19-0.40) and a precision of 0.99 (95% CI 0.96-1.00) versus 0.81 (95% CI 0.65-0.95). On the whole data set, the NLP-augmented algorithm extracted 33.6% more entities, resulting in 53.8% more patients meeting the NCCN criteria. CONCLUSIONS: Compared with the structured data algorithm, the NLP-augmented algorithm based on both structured and unstructured family health history data in the EHR increased the number of patients identified as meeting the NCCN criteria for genetic testing for hereditary breast or ovarian and colorectal cancers.

14.
J Am Med Inform Assoc ; 29(5): 928-936, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35224632

ABSTRACT

Population health management (PHM) is an important approach to promote wellness and deliver health care to targeted individuals who meet criteria for preventive measures or treatment. A critical component for any PHM program is a data analytics platform that can target those eligible individuals. OBJECTIVE: The aim of this study was to design and implement a scalable standards-based clinical decision support (CDS) approach to identify patient cohorts for PHM and maximize opportunities for multi-site dissemination. MATERIALS AND METHODS: An architecture was established to support bidirectional data exchanges between heterogeneous electronic health record (EHR) data sources, PHM systems, and CDS components. HL7 Fast Healthcare Interoperability Resources and CDS Hooks were used to facilitate interoperability and dissemination. The approach was validated by deploying the platform at multiple sites to identify patients who meet the criteria for genetic evaluation of familial cancer. RESULTS: The Genetic Cancer Risk Detector (GARDE) platform was created and is comprised of four components: (1) an open-source CDS Hooks server for computing patient eligibility for PHM cohorts, (2) an open-source Population Coordinator that processes GARDE requests and communicates results to a PHM system, (3) an EHR Patient Data Repository, and (4) EHR PHM Tools to manage patients and perform outreach functions. Site-specific deployments were performed on onsite virtual machines and cloud-based Amazon Web Services. DISCUSSION: GARDE's component architecture establishes generalizable standards-based methods for computing PHM cohorts. Replicating deployments using one of the established deployment methods requires minimal local customization. Most of the deployment effort was related to obtaining site-specific information technology governance approvals.


Subject(s)
Decision Support Systems, Clinical , Population Health Management , Delivery of Health Care , Electronic Health Records , Humans , Information Storage and Retrieval
15.
J Exp Psychol Appl ; 28(4): 677-693, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34110859

ABSTRACT

Studies of eyewitness memory commonly employ variations on a standard misinformation paradigm. Participants are (a) exposed to an event (e.g., a simulated crime), (b) misled about certain details of the event and (c) questioned about their memory of the original event. Misinformation may be provided in the second step via a range of methods. Here, we directly compared the effectiveness of six misinformation delivery methods-leading questions, elaborate leading questions, doctored photographs, simple narratives, scrambled narratives, and missing word narratives. We presented 1182 participants with a video of a simulated robbery and randomly assigned them to receive misinformation about two out of four critical details via one of these methods. In line with the levels of processing account of memory, we report that methods that encourage deeper processing of misinformation result in more memory distortions. Contrary to previous reports, doctored photographs were not a successful method of implanting misinformation. The six delivery methods resulted in minimal differences in confidence and metamemory estimates, but participants were more likely to notice the presence of misinformation in the simple narrative condition. We conclude with suggestions for the selection of an appropriate method of misinformation delivery in future studies. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Memory , Mental Recall , Humans , Communication , Narration , Retention, Psychology
16.
J Med Internet Res ; 23(11): e29447, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34792472

ABSTRACT

BACKGROUND: Cancer genetic testing to assess an individual's cancer risk and to enable genomics-informed cancer treatment has grown exponentially in the past decade. Because of this continued growth and a shortage of health care workers, there is a need for automated strategies that provide high-quality genetics services to patients to reduce the clinical demand for genetics providers. Conversational agents have shown promise in managing mental health, pain, and other chronic conditions and are increasingly being used in cancer genetic services. However, research on how patients interact with these agents to satisfy their information needs is limited. OBJECTIVE: Our primary aim is to assess user interactions with a conversational agent for pretest genetics education. METHODS: We conducted a feasibility study of user interactions with a conversational agent who delivers pretest genetics education to primary care patients without cancer who are eligible for cancer genetic evaluation. The conversational agent provided scripted content similar to that delivered in a pretest genetic counseling visit for cancer genetic testing. Outside of a core set of information delivered to all patients, users were able to navigate within the chat to request additional content in their areas of interest. An artificial intelligence-based preprogrammed library was also established to allow users to ask open-ended questions to the conversational agent. Transcripts of the interactions were recorded. Here, we describe the information selected, time spent to complete the chat, and use of the open-ended question feature. Descriptive statistics were used for quantitative measures, and thematic analyses were used for qualitative responses. RESULTS: We invited 103 patients to participate, of which 88.3% (91/103) were offered access to the conversational agent, 39% (36/91) started the chat, and 32% (30/91) completed the chat. Most users who completed the chat indicated that they wanted to continue with genetic testing (21/30, 70%), few were unsure (9/30, 30%), and no patient declined to move forward with testing. Those who decided to test spent an average of 10 (SD 2.57) minutes on the chat, selected an average of 1.87 (SD 1.2) additional pieces of information, and generally did not ask open-ended questions. Those who were unsure spent 4 more minutes on average (mean 14.1, SD 7.41; P=.03) on the chat, selected an average of 3.67 (SD 2.9) additional pieces of information, and asked at least one open-ended question. CONCLUSIONS: The pretest chat provided enough information for most patients to decide on cancer genetic testing, as indicated by the small number of open-ended questions. A subset of participants were still unsure about receiving genetic testing and may require additional education or interpersonal support before making a testing decision. Conversational agents have the potential to become a scalable alternative for pretest genetics education, reducing the clinical demand on genetics providers.


Subject(s)
Artificial Intelligence , Communication , Chronic Disease , Genetic Counseling , Humans , Mental Health
17.
Biophys J ; 120(23): 5141-5157, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34767787

ABSTRACT

The cytoplasmic heme binding protein from Pseudomonas aeruginosa, PhuS, plays two essential roles in regulating heme uptake and iron homeostasis. First, PhuS shuttles exogenous heme to heme oxygenase (HemO) for degradation and iron release. Second, PhuS binds DNA and modulates the transcription of the prrF/H small RNAs (sRNAs) involved in the iron-sparing response. Heme binding to PhuS regulates this dual function, as the unliganded form binds DNA, whereas the heme-bound form binds HemO. Crystallographic studies revealed nearly identical structures for apo- and holo-PhuS, and yet numerous solution-based measurements indicate that heme binding is accompanied by large conformational rearrangements. In particular, hydrogen-deuterium exchange mass spectrometry (HDX-MS) of apo- versus holo-PhuS revealed large differences in deuterium uptake, notably in α-helices 6, 7, and 8 (α6,7,8), which contribute to the heme binding pocket. These helices were mostly labile in apo-PhuS but largely protected in holo-PhuS. In contrast, in silico-predicted deuterium uptake levels of α6,7,8 from molecular dynamics (MD) simulations of the apo- and holo-PhuS structures are highly similar, consistent only with the holo-PhuS HDX-MS data. To rationalize this discrepancy between crystal structures, simulations, and observed HDX-MS, we exploit a recently developed computational approach (HDXer) that fits the relative weights of conformational populations within an ensemble of structures to conform to a target set of HDX-MS data. Here, a combination of enhanced sampling MD, HDXer, and dimensionality reduction analysis reveals an apo-PhuS conformational landscape in which α6, 7, and 8 are significantly rearranged compared to the crystal structure, including a loss of secondary structure in α6 and the displacement of α7 toward the HemO binding interface. Circular dichroism analysis confirms the loss of secondary structure, and the extracted ensembles of apo-PhuS and of heme-transfer-impaired H212R mutant, are consistent with known heme binding and transfer properties. The proposed conformational landscape provides structural insights into the modulation by heme of the dual function of PhuS.


Subject(s)
Bacterial Proteins , Heme , Bacterial Proteins/metabolism , Heme/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Heme-Binding Proteins , Protein Conformation , Pseudomonas aeruginosa/metabolism
18.
JAMIA Open ; 4(3): ooab041, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34345802

ABSTRACT

OBJECTIVE: To establish an enterprise initiative for improving health and health care through interoperable electronic health record (EHR) innovations. MATERIALS AND METHODS: We developed a unifying mission and vision, established multidisciplinary governance, and formulated a strategic plan. Key elements of our strategy include establishing a world-class team; creating shared infrastructure to support individual innovations; developing and implementing innovations with high anticipated impact and a clear path to adoption; incorporating best practices such as the use of Fast Healthcare Interoperability Resources (FHIR) and related interoperability standards; and maximizing synergies across research and operations and with partner organizations. RESULTS: University of Utah Health launched the ReImagine EHR initiative in 2016. Supportive infrastructure developed by the initiative include various FHIR-related tooling and a systematic evaluation framework. More than 10 EHR-integrated digital innovations have been implemented to support preventive care, shared decision-making, chronic disease management, and acute clinical care. Initial evaluations of these innovations have demonstrated positive impact on user satisfaction, provider efficiency, and compliance with evidence-based guidelines. Return on investment has included improvements in care; over $35 million in external grant funding; commercial opportunities; and increased ability to adapt to a changing healthcare landscape. DISCUSSION: Key lessons learned include the value of investing in digital innovation initiatives leveraging FHIR; the importance of supportive infrastructure for accelerating innovation; and the critical role of user-centered design, implementation science, and evaluation. CONCLUSION: EHR-integrated digital innovation initiatives can be key assets for enhancing the EHR user experience, improving patient care, and reducing provider burnout.

19.
BMC Health Serv Res ; 21(1): 542, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078380

ABSTRACT

BACKGROUND: Advances in genetics and sequencing technologies are enabling the identification of more individuals with inherited cancer susceptibility who could benefit from tailored screening and prevention recommendations. While cancer family history information is used in primary care settings to identify unaffected patients who could benefit from a cancer genetics evaluation, this information is underutilized. System-level population health management strategies are needed to assist health care systems in identifying patients who may benefit from genetic services. In addition, because of the limited number of trained genetics specialists and increasing patient volume, the development of innovative and sustainable approaches to delivering cancer genetic services is essential. METHODS: We are conducting a randomized controlled trial, entitled Broadening the Reach, Impact, and Delivery of Genetic Services (BRIDGE), to address these needs. The trial is comparing uptake of genetic counseling, uptake of genetic testing, and patient adherence to management recommendations for automated, patient-directed versus enhanced standard of care cancer genetics services delivery models. An algorithm-based system that utilizes structured cancer family history data available in the electronic health record (EHR) is used to identify unaffected patients who receive primary care at the study sites and meet current guidelines for cancer genetic testing. We are enrolling eligible patients at two healthcare systems (University of Utah Health and New York University Langone Health) through outreach to a randomly selected sample of 2780 eligible patients in the two sites, with 1:1 randomization to the genetic services delivery arms within sites. Study outcomes are assessed through genetics clinic records, EHR, and two follow-up questionnaires at 4 weeks and 12 months after last genetic counseling contactpre-test genetic counseling. DISCUSSION: BRIDGE is being conducted in two healthcare systems with different clinical structures and patient populations. Innovative aspects of the trial include a randomized comparison of a chatbot-based genetic services delivery model to standard of care, as well as identification of at-risk individuals through a sustainable EHR-based system. The findings from the BRIDGE trial will advance the state of the science in identification of unaffected patients with inherited cancer susceptibility and delivery of genetic services to those patients. TRIAL REGISTRATION: BRIDGE is registered as NCT03985852 . The trial was registered on June 6, 2019 at clinicaltrials.gov .


Subject(s)
Genetic Counseling , Neoplasms , Child , Female , Genetic Testing , Humans , Infant, Newborn , Neoplasms/genetics , Neoplasms/therapy , New York , Pregnancy , Primary Health Care
20.
J Phys Chem B ; 125(17): 4415-4427, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33900769

ABSTRACT

Noncovalent interactions underlie nearly all molecular processes in the condensed phase from solvation to catalysis. Their quantification within a physically consistent framework remains challenging. Experimental vibrational Stark effect (VSE)-based solvatochromism can be combined with molecular dynamics (MD) simulations to quantify the electrostatic forces in solute-solvent interactions for small rigid molecules and, by extension, when these solutes bind in enzyme active sites. While generalizing this approach toward more complex (bio)molecules, such as the conformationally flexible and charged penicillin G (PenG), we were surprised to observe inconsistencies in MD-based electric fields. Combining synthesis, VSE spectroscopy, and computational methods, we provide an intimate view on the origins of these discrepancies. We observe that the electric fields are correlated to conformation-dependent effects of the flexible PenG side chain, including both the local solvation structure and solute conformational sampling in MD. Additionally, we identified that MD-based electric fields are consistently overestimated in three-point water models in the vicinity of charged groups; this cannot be entirely ameliorated using polarizable force fields (AMOEBA) or advanced water models. This work demonstrates the value of the VSE as a direct method for experiment-guided refinements of MD force fields and establishes a general reductionist approach to calibrating vibrational probes for complex (bio)molecules.


Subject(s)
Molecular Dynamics Simulation , Vibration , Electricity , Penicillin G , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...