Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Intensive Care Med ; 50(4): 539-547, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38478027

ABSTRACT

PURPOSE: Early recognition and effective treatment of sepsis improves outcomes in critically ill patients. However, antibiotic exposures are frequently suboptimal in the intensive care unit (ICU) setting. We describe the feasibility of the Bayesian dosing software Individually Designed Optimum Dosing Strategies (ID-ODS™), to reduce time to effective antibiotic exposure in children and adults with sepsis in ICU. METHODS: A multi-centre prospective, non-randomised interventional trial in three adult ICUs and one paediatric ICU. In a pre-intervention Phase 1, we measured the time to target antibiotic exposure in participants. In Phase 2, antibiotic dosing recommendations were made using ID-ODS™, and time to target antibiotic concentrations were compared to patients in Phase 1 (a pre-post-design). RESULTS: 175 antibiotic courses (Phase 1 = 123, Phase 2 = 52) were analysed from 156 participants. Across all patients, there was no difference in the time to achieve target exposures (8.7 h vs 14.3 h in Phase 1 and Phase 2, respectively, p = 0.45). Sixty-one courses in 54 participants failed to achieve target exposures within 24 h of antibiotic commencement (n = 36 in Phase 1, n = 18 in Phase 2). In these participants, ID-ODS™ was associated with a reduction in time to target antibiotic exposure (96 vs 36.4 h in Phase 1 and Phase 2, respectively, p < 0.01). These patients were less likely to exhibit subtherapeutic antibiotic exposures at 96 h (hazard ratio (HR) 0.02, 95% confidence interval (CI) 0.01-0.05, p < 0.01). There was no difference observed in in-hospital mortality. CONCLUSIONS: Dosing software may reduce the time to achieve target antibiotic exposures. It should be evaluated further in trials to establish its impact on clinical outcomes.


Subject(s)
Anti-Bacterial Agents , Sepsis , Adult , Child , Humans , Anti-Bacterial Agents/therapeutic use , Bayes Theorem , Critical Illness/therapy , Intensive Care Units, Pediatric , Prospective Studies , Sepsis/drug therapy , Software
3.
Ther Drug Monit ; 44(1): 19-31, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34750338

ABSTRACT

PURPOSE: In the present narrative review, the authors aimed to discuss the relationship between the pharmacokinetic/pharmacodynamic (PK/PD) of antibiotics and clinical response (including efficacy and toxicity). In addition, this review describes how this relationship can be applied to define the therapeutic range of a particular antibiotic (or antibiotic class) for therapeutic drug monitoring (TDM). METHODS: Relevant clinical studies that examined the relationship between PK/PD of antibiotics and clinical response (efficacy and response) were reviewed. The review (performed for studies published in English up to September 2021) assessed only commonly used antibiotics (or antibiotic classes), including aminoglycosides, beta-lactam antibiotics, daptomycin, fluoroquinolones, glycopeptides (teicoplanin and vancomycin), and linezolid. The best currently available evidence was used to define the therapeutic range for these antibiotics. RESULTS: The therapeutic range associated with maximal clinical efficacy and minimal toxicity is available for commonly used antibiotics, and these values can be implemented when TDM for antibiotics is performed. Additional data are needed to clarify the relationship between PK/PD indices and the development of antibiotic resistance. CONCLUSIONS: TDM should only be regarded as a means to achieve the main goal of providing safe and effective antibiotic therapy for all patients. The next critical step is to define exposures that can prevent the development of antibiotic resistance and include these exposures as therapeutic drug monitoring targets.


Subject(s)
Anti-Bacterial Agents , Drug Monitoring , Aminoglycosides , Anti-Bacterial Agents/therapeutic use , Humans , Vancomycin , beta-Lactams/therapeutic use
4.
Front Cell Infect Microbiol ; 11: 667680, 2021.
Article in English | MEDLINE | ID: mdl-34249774

ABSTRACT

Background: Sepsis contributes significantly to morbidity and mortality globally. In Australia, 20,000 develop sepsis every year, resulting in 5,000 deaths, and more than AUD$846 million in expenditure. Prompt, appropriate antibiotic therapy is effective in improving outcomes in sepsis. Conventional culture-based methods to identify appropriate therapy have limited yield and take days to complete. Recently, nanopore technology has enabled rapid sequencing with real-time analysis of pathogen DNA. We set out to demonstrate the feasibility and diagnostic accuracy of pathogen sequencing direct from clinical samples, and estimate the impact of this approach on time to effective therapy when integrated with personalised software-guided antimicrobial dosing in children and adults on ICU with sepsis. Methods: The DIRECT study is a pilot prospective, non-randomized multicentre trial of an integrated diagnostic and therapeutic algorithm combining rapid direct pathogen sequencing and software-guided, personalised antibiotic dosing in children and adults with sepsis on ICU. Participants and interventions: DIRECT will collect microbiological and pharmacokinetic samples from approximately 200 children and adults with sepsis admitted to one of four ICUs in Brisbane. In Phase 1, we will evaluate Oxford Nanopore Technologies MinION sequencing direct from blood in 50 blood culture-proven sepsis patients recruited from consecutive patients with suspected sepsis. In Phase 2, a further 50 consecutive patients with suspected sepsis will be recruited in whom MinION sequencing will be combined with Bayesian software-guided (ID-ODS) personalised antimicrobial dosing. Outcome measures: The primary outcome is time to effective antimicrobial therapy, defined as trough drug concentrations above the MIC of the pathogen. Secondary outcomes are diagnostic accuracy of MinION sequencing from whole blood, time to pathogen identification and susceptibility testing using sequencing direct from whole blood and from positive blood culture broth. Discussion: Rapid pathogen sequencing coupled with antimicrobial dosing software has great potential to overcome the limitations of conventional diagnostics which often result in prolonged inappropriate antimicrobial therapy. Reduced time to optimal antimicrobial therapy may reduce sepsis mortality and ICU length of stay. This pilot study will yield key feasibility data to inform further, urgently needed sepsis studies. Phase 2 of the trial protocol is registered with the ANZCTR (ACTRN12620001122943). Trial registration: Registered with the Australia New Zealand Clinical Trials Registry Number ACTRN12620001122943.


Subject(s)
Sepsis , Adult , Anti-Bacterial Agents/therapeutic use , Australia , Bayes Theorem , Child , Humans , Multicenter Studies as Topic , Pilot Projects , Prospective Studies , Sepsis/diagnosis , Sepsis/drug therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL