Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 56(5): 1281-98, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21285487

ABSTRACT

An independent assessment of the dose delivery in ion therapy can be performed using positron emission tomography (PET). For that a distribution of positron emitters which appear as the result of interaction between ions of the therapeutic beam and the irradiated tissue is measured during or after the irradiation. Three concepts for PET monitoring implemented in various therapy facilities are considered in this paper. The in-beam PET concept relies on the PET measurement performed simultaneously to the irradiation by means of a PET scanner which is completely integrated into the irradiation site. The in-room PET concept allows measurement immediately after irradiation by a standalone PET scanner which is installed very close to the irradiation site. In the off-line PET scenario the measurement is performed by means of a standalone PET/CT scanner 10-30 min after the irradiation. These three concepts were evaluated according to image quality criteria, integration costs, and their influence onto the workflow of radiotherapy. In-beam PET showed the best performance. However, the integration costs were estimated as very high for this modality. Moreover, the performance of in-beam PET depends heavily on type and duty cycle of the accelerator. The in-room PET is proposed for planned therapy facilities as a good compromise between the quality of measured data and integration efforts. For facilities which are close to the nuclear medicine departments off-line PET can be suggested under several circumstances.


Subject(s)
Positron-Emission Tomography/methods , Radiotherapy, Computer-Assisted/methods , Humans , Image Processing, Computer-Assisted , Ions/therapeutic use , Positron-Emission Tomography/instrumentation , Radiotherapy, Computer-Assisted/instrumentation
2.
Phys Med Biol ; 55(7): 1989-98, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20224157

ABSTRACT

At present, in-beam positron emission tomography (PET) is the only method for in vivo and in situ range verification in ion therapy. At the GSI Helmholtzzentrum für Schwerionenforschung GmbH (GSI) Darmstadt, Germany, a unique in-beam PET installation has been operated from 1997 until the shut down of the carbon ion therapy facility in 2008. Therapeutic irradiation by means of (12)C ion beams of more than 400 patients have been monitored. In this paper a first quantitative study on the accuracy of the in-beam PET method to detect range deviations between planned and applied treatment in clinically relevant situations using simulations based on clinical data is presented. Patient treatment plans were used for performing simulations of positron emitter distributions. For each patient a range difference of + or - 6 mm in water was applied and compared to simulations without any changes. The comparisons were performed manually by six experienced evaluators for data of 81 patients. The number of patients required for the study was calculated using the outcome of a pilot study. The results indicate a sensitivity of (91 + or - 3)% and a specificity of (96 + or - 2)% for detecting an overrange, a reduced range is recognized with a sensitivity of (92 + or - 3)% and a specificity of (96 + or - 2)%. The positive and the negative predictive value of this method are 94% and 87%, respectively. The interobserver coefficient of variation is between 3 and 8%. The in-beam PET method demonstrated a high sensitivity and specificity for the detection of range deviations. As the range is a most indicative factor of deviations in the dose delivery, the promising results shown in this paper confirm the in-beam PET method as an appropriate tool for monitoring ion therapy.


Subject(s)
Algorithms , Heavy Ion Radiotherapy , Models, Biological , Positron-Emission Tomography/methods , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Computer-Assisted/methods , Computer Simulation , Humans , Radiotherapy Dosage
3.
J Invasive Cardiol ; 17(9): 491-6, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16145241

ABSTRACT

Recent advances in positron emission tomography (PET) instrumentation have paralleled those of multichannel computed tomography (CT) for cardiac applications. Whereas multichannel CT angiography provides information on the presence and extent of anatomical luminal narrowing of epicardial coronary arteries, stress myocardial perfusion PET provides information on the downstream functional consequences of such anatomic lesions. With the advent of hybrid PET/CT systems, such complementary information of anatomy and physiology can be realized immediately at the same imaging session. By acquiring dynamic, gated myocardial perfusion data, PET studies provide insight into impairment of regional coronary blood flow reserve and microvascular endothelial dysfunction. This paper presents recent developments in PET detector materials, acquisition modes, combined PET/CT scanners, rubidium-82 (Rb-82) gated myocardial perfusion studies and analysis methods for absolute myocardial blood flow quantification.


Subject(s)
Nuclear Medicine/trends , Positron-Emission Tomography/trends , Tomography, Emission-Computed, Single-Photon/trends , Tomography, X-Ray Computed/trends , Coronary Disease/diagnostic imaging , Humans , Nuclear Medicine/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...