Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257298

ABSTRACT

Most tablets put on the market are coated with polymers soluble in water. The Opadry II 85 series from Colorcon Inc., is a family of PVA-based products marketed since the 1990s. Despite numerous publications on the properties of PVA, to date, limited work has been undertaken to determine the physico-chemical parameters (i.e., UV light, high temperature, and relative humidity) that could affect the performance of PVA-based coatings. To this end, we performed artificial ageing processes on samples made of Opadry Orange II or of some selected components of this coating and analysed them by means of a multidisciplinary approach, using, for example, FTIR, NMR, rheology, and DMTA measurements. In this way, we analysed the influence of the critical components of the Opadry Orange II formula, such as titanium dioxide and aluminium hydroxide, on the coating characteristics under ageing conditions.

2.
Macromol Biosci ; 24(5): e2300458, 2024 May.
Article in English | MEDLINE | ID: mdl-38198834

ABSTRACT

This study aims to obtain a cyto-compatible 3D printable bio-resin for the manufacturing of meshes designed from acquired real patients' bone defect to be used in future for guided bone regeneration (GBR), achieving the goal of personalized medicine, decreasing surgical, recovery time, and patient discomfort. To this purpose, a biobased, biocompatible, and photo-curable resin made of acrylated epoxidized soybean oil (AESO) diluted with soybean oil (SO) is developed and 3D printed using a commercial digital light processing (DLP) 3D printer. 3D printed samples show good thermal properties, allowing for thermally-based sterilization process and mechanical properties typical of crosslinked natural oils (i.e., E = 12 MPa, UTS = 1.5 MPa), suitable for the GBR application in the oral surgery. The AESO-SO bio-resin proves to be cytocompatible, allowing for fibroblast cells proliferation (viability at 72 h > 97%), without inducing severe inflammatory response when co-cultured with macrophages, as demonstrated by cytokine antibody arrays, that is anyway resolved in the first 24 h. Moreover, accelerated degradation tests prove that the bio-resin is biodegradable in hydrolytic environments.


Subject(s)
Bone Regeneration , Printing, Three-Dimensional , Soybean Oil , Bone Regeneration/drug effects , Soybean Oil/chemistry , Humans , Oral Surgical Procedures/methods , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Guided Tissue Regeneration/methods , Mice , Fibroblasts/cytology , Fibroblasts/drug effects , Cell Proliferation/drug effects
3.
Med Leg J ; : 258172231191075, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041825

ABSTRACT

The use of non-lethal weapons has spread worldwide, being introduced as an alternative to firearms in many countries such as the United States or the United Kingdom. Among non-lethal weapons, conducted electrical weapons have been adopted worldwide, to control unruly suspected criminals or to neutralise violent situations. The stun gun belongs to this category and is the most widely available, with more than 140,000 units in use by police officers in the field in the US, and an additional 100,000 electrical stun guns owned by civilians worldwide. In Italy, the use of conducted electrical weapons by law enforcement has only recently been introduced, with private use and commercialisation still prohibited, mainly due to controversies related to the potential dangers of such devices.Before the official adoption, several experiments had to be carried out, with mechanisms that reproduced the ballistics of the stun gun. Here we present the case of a man who suffered a self-injury trauma to his hand during a ballistics exercise with a crossbow loaded with stun gun probes.

4.
Materials (Basel) ; 17(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203933

ABSTRACT

This work is part of a research project aimed at developing a bio-based binder, composed mainly of polylactic acid (PLA), to produce Ti6Al4V feedstock suitable for use in MAM (Metal Additive Manufacturing) via mFFF (metal Fused Filament Fabrication), in order to manufacture a titanium alloy specimen. While in Bragaglia et al. the mechanical characteristics of this sample were analyzed, the aim used of this study is to compare the mentioned mFFF process with one of the most used MAM processes in aerospace applications, known as Selective Laser Sintering (SLS), based on the Life Cycle Assessment (LCA) method. Despite the excellent properties of the products manufactured via SLS, this 3D printing technology involves high upfront capital costs while mFFF is a cheaper process. Moreover, the mFFF process has the advantage of potentially being exported for production in microgravity or weightless environments for in-space use. Nevertheless, most scientific literature shows comparisons of the Fused Filament Fabrication (FFF) printing stage with other AM technologies, and there are no comparative LCA "Candle to Gate" studies with mFFF processes to manufacture the same metal sample. Therefore, both MAM processes are analyzed with the LCA "Candle to Gate" method, from the extraction of raw materials to the production of the finished titanium alloy sample. The main results demonstrate a higher impact (+50%) process for mFFF and higher electrical energy consumption (7.31 kWh) compared to SLS (0.32 kWh). After power consumption, the use of titanium becomes the main contributor of Global Warming Potential (GWP) and Abiotic Depletion Potential (ADP) for both processes. Finally, an alternative scenario is evaluated in which the electrical energy is exclusively generated through photovoltaics. In this case, the results show how the mFFF process develops a more sustainable outcome than SLS.

5.
Polymers (Basel) ; 14(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36433087

ABSTRACT

This work aims to better understand the type of thermoplastic binders required to produce highly loaded copper filaments that can be successfully printed via low-cost filament-based material extrusion (MEX). Compounding feedstock material with 55 vol.% of copper and three multi-component binder systems has been performed. The MEX behavior of these feedstocks was evaluated by depositing material at different speeds and appropriately selecting the extrusion temperature depending on the binder composition. The rest of the MEX parameters remained constant to evaluate the printing quality for the different feedstocks. Printable filaments were produced with low ovality and good surface quality. The filaments showed good dispersion of the powder and polymeric binder system in SEM analysis. The feedstock mechanical properties, i.e., the tensile strength of the filament, were sufficient to ensure proper feeding in the MEX machine. The viscosity of the feedstock systems at the adjusted printing temperatures lies in the range of 102-103 Pa·s at the shear rate of 100-1000 s-1, which appears to be sufficient to guarantee the correct flowability and continuous extrusion. The tensile properties vary greatly (e.g., ultimate tensile strength 3-9.8 MPa, elongation at break 1.5-40.5%), and the most fragile filament could not be reliably printed at higher speeds. Micrographs of the cross-section of printed parts revealed that as the printing speed increased, the porosity was minimized because the volumetric flow of the feedstock material increased, which can help to fill pores. This study offers new insights into the feedstock requirements needed to produce low-cost intricate copper components of high quality in a reliable and efficient manner. Such components can find many applications in the electronics, biomedical, and many other industries.

6.
Materials (Basel) ; 15(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36295462

ABSTRACT

In this paper, a hybrid commercially available alumina/polymer filament was 3D printed and thermally treated (debinding and sintering) to obtain ceramic parts. Microscopic and spectroscopic analysis was used to thoroughly characterize the green and sintered parts in terms of their mesostructured, as well as their flexural properties. The sintered samples show an α alumina crystalline phase with a mean density of 3.80 g/cm3, a tensile strength of 232.6 ± 12.3 MPa, and a Vickers hardness of 21 ± 0.7 GPa. The mean thermal conductivity value at room temperature was equal to 21.52 ± 0.02 W/(mK). The values obtained through FFF production are lower than those obtained by conventional processes as the 3D-printed samples exhibited imperfect interlayer bonding and voids similar to those found in the structures of polymeric FFFs. Nonetheless, the highly filled ceramic filament is suitable for use in affordable and easy-to-operate FFF machines, as shown by the cost analysis of a real printed and sintered FFF part.

7.
Polymers (Basel) ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616358

ABSTRACT

In this paper, poly-ether-ether-ketone (PEEK) carbon-nanotube (CNT) self-monitoring composites at different levels of filler loading (i.e., 3, 5 and 10% by weight) have been extruded as 3D-printable filaments, showing gauge factor values of 14.5, 3.36 and 1.99, respectively. CNT composite filaments of 3 and 5 wt% were 3D-printed into tensile samples, while the PEEK 10CNT filament was found to be barely printable. The 3D-printed PEEK 3CNT and PEEK 5CNT composites presented piezo-resistive behavior, with an increase in electrical resistance under mechanical stress, and showed an average gauge factor of 4.46 and 2.03, respectively. Mechanical tests highlighted that 3D-printed samples have a laminate-like behavior, presenting ultimate tensile strength that is always higher than 60 MPa, hence they offer the possibility to detect damages in an orthogonal direction to the applied load wit high sensitivity.

8.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208091

ABSTRACT

The health monitoring of structures is of great interest in order to check components' structural life and monitor damages during operation. Self-monitoring materials can provide both the structural and monitoring functionality in one component and exploit their piezoresistive behavior, namely, the variation of electrical resistivity with an applied mechanical strain. In this work, self-monitoring plies were developed to be inserted into glass-fiber reinforced epoxy-based laminates in order to achieve structural monitoring. Nanocomposite epoxy-based resins were developed employing different contents of high surface area carbon black (CB, 6 wt%) and multiwall carbon nanotubes (MWCNT, 0.75 and 1 wt%), and rheologically and thermomechanically characterized. Self-monitoring plies were manufactured by impregnating glass woven fabrics with the resins, and were laminated with non-sensing plies via a vacuum-bag process to produce sensored laminates. The self-monitoring performance of the laminates was assessed during monotonic and cyclic three-point bending tests, as well as ball drop impact tests. A higher sensitivity was found for the CB-based systems (Gauge Factor 6.1), while MWCNTs (0.55 and 1.04) ensure electrical percolation at lower filler contents, as expected. The systems also showed the capability of being used to predict residual life and damage occurred under impact.

SELECTION OF CITATIONS
SEARCH DETAIL
...