Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
NanoImpact ; 212021 01.
Article in English | MEDLINE | ID: mdl-33521386

ABSTRACT

Cellulose nanofibers (CNF) reduced serum triglyceride levels in rats when co-administered with heavy cream by gavage. Do CNF and other nanomaterials (NMs) alter the tissue distribution and retention of co-administered metal ions? We evaluated whether 5 different NMs affected tissue distribution of co-ingested 65Zn++ and 59Fe+++ in zinc-replete versus zinc-deficient mice. Male C57BL/6J mice were fed either zinc-replete or zinc-deficient diets for 3 weeks, followed by gavage with NM suspensions in water containing both 65ZnCl2 and 59FeCl3. Urine and feces were measured for 48 h post-gavage. Mice were euthanized and samples of 22 tissues were collected and analyzed for 65Zn and 59Fe in a gamma counter. Our data show that zinc deficiency alters the tissue distribution of 65Zn but not of 59Fe, indicating that zinc and iron homeostasis are regulated by distinct mechanisms. Among the tested NMs, soluble starch-coated chitosan nanoparticles, cellulose nanocrystals, and TiO2 reduced Zn and Fe tissue retention in zinc-deficient but not in zinc-replete animals.


Subject(s)
Nanostructures , Zinc , Animals , Copper , Iron , Male , Mice , Mice, Inbred C57BL , Rats , Tissue Distribution
2.
Part Fibre Toxicol ; 17(1): 20, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32498698

ABSTRACT

BACKGROUND: Talc, a hydrous magnesium silicate, often used for genital hygiene purposes, is associated with ovarian carcinoma in case-control studies. Its potential to cause inflammation, injury, and functional changes in cells has been described. A complication of such studies is that talc preparations may be contaminated with other materials. A previous study by (Beck et al. Toxicol Appl Pharmacol 87:222-34, 1987) used a hamster model to study talc and granite dust exposure effects on various biochemical and cellular inflammatory markers. Our current study accessed key materials used in that 1987 study; we re-analyzed the original talc dust with contemporary scanning electron microscopy and energy dispersive x-ray analysis (SEM/EDX) for contaminants. We also examined the original bronchoalveolar lavage (BAL) cells with polarized light microscopy to quantify cell-associated birefringent particles to gain insight into the talc used. RESULTS: SEM/EDX analyses showed that asbestos fibers, quartz, and toxic metal particulates were below the limits of detection in the original talc powder. However, fibers with aspect ratios ≥3:1 accounted for 22% of instilled material, mostly as fibrous talc. Talc (based on Mg/Si atomic weight % ratio) was the most abundant chemical signature, and magnesium silicates with various other elements made up the remainder. BAL cell counts confirmed the presence of acute inflammation, which followed intratracheal instillation. Measurements of cell associated birefringent particles phagocytosis revealed significant differences among talc, granite, and control exposures with high initial uptake of talc compared to granite, but over the 14-day experiment, talc phagocytosis by lavaged cells was significantly less than that of granite. Phagocytosis of talc fibers by macrophages was observed, and birefringent particles were found in macrophages, neutrophils, and multinucleate giant cells in lavaged cells from talc-exposed animals. CONCLUSION: Our data support the contention that talc, even without asbestos and other known toxic contaminants, may elicit inflammation and contribute to lung disease. Our findings support the conclusions of (Beck et al. Toxicol Appl Pharmacol 87:222-34, 1987) study. By analyzing particulate exposures with polarized light microscopy and SEM/EDX, fibrous talc was identified and a distinctive pattern of impaired particulate ingestion was demonstrated.


Subject(s)
Inhalation Exposure/adverse effects , Lung/drug effects , Macrophages/drug effects , Magnesium Silicates/toxicity , Neutrophils/drug effects , Talc/toxicity , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cells, Cultured , Cricetinae , Dust , Inhalation Exposure/analysis , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Macrophages/ultrastructure , Magnesium Silicates/chemistry , Magnesium Silicates/pharmacokinetics , Male , Microscopy, Electron, Scanning , Neutrophils/metabolism , Neutrophils/ultrastructure , Particle Size , Quartz/chemistry , Quartz/pharmacokinetics , Quartz/toxicity , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacokinetics , Silicon Dioxide/toxicity , Spectrometry, X-Ray Emission , Surface Properties , Talc/chemistry , Talc/pharmacokinetics
3.
Chem Res Toxicol ; 33(5): 1145-1162, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32349469

ABSTRACT

A variety of imaging and analytical methods have been developed to study nanoparticles in cells. Each has its benefits, limitations, and varying degrees of expense and difficulties in implementation. High-resolution analytical scanning transmission electron microscopy (HRSTEM) has the unique ability to image local cellular environments adjacent to a nanoparticle at near atomic resolution and apply analytical tools to these environments such as energy dispersive spectroscopy and electron energy loss spectroscopy. These tools can be used to analyze particle location, translocation and potential reformation, ion dispersion, and in vivo synthesis of second-generation nanoparticles. Such analyses can provide in depth understanding of tissue-particle interactions and effects that are caused by the environmental "invader" nanoparticles. Analytical imaging can also distinguish phases that form due to the transformation of "invader" nanoparticles in contrast to those that are triggered by a response mechanism, including the commonly observed iron biomineralization in the form of ferritin nanoparticles. The analyses can distinguish ion species, crystal phases, and valence of parent nanoparticles and reformed or in vivo synthesized phases throughout the tissue. This article will briefly review the plethora of methods that have been developed over the last 20 years with an emphasis on the state-of-the-art techniques used to image and analyze nanoparticles in cells and highlight the sample preparation necessary for biological thin section observation in a HRSTEM. Specific applications that provide visual and chemical mapping of the local cellular environments surrounding parent nanoparticles and second-generation phases are demonstrated, which will help to identify novel nanoparticle-produced adverse effects and their associated mechanisms.


Subject(s)
Nanostructures/adverse effects , Nanostructures/analysis , Organ Specificity , Microscopy, Electron, Transmission
4.
Sci Rep ; 10(1): 6480, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32296115

ABSTRACT

Precision-cut lung slices (PCLS) are ideal for measuring small airway contraction. However, these measurements are currently limited to acute exposure scenarios that typically last a few minutes to a few hours. Using an insulin-supplemented culture medium, we prolong the small airway contractility in mouse PCLS for up to two weeks. Compared to conventional culture medium, insulin-supplemented culture medium provides no additional benefit in preserving cellular viability or airway structure. However, it protects the airway smooth muscle (ASM) against a loss of smooth muscle myosin heavy chain (SMMHC) expression. We elucidate the significance of this new culture medium for chronic disease modeling of IL-13-induced airway hyper-responsiveness.


Subject(s)
Lung/physiopathology , Muscle Contraction/physiology , Muscle, Smooth/physiology , Respiratory Hypersensitivity/immunology , Tissue Culture Techniques/methods , Animals , Culture Media/metabolism , Female , Humans , Insulin/metabolism , Interleukin-13/immunology , Interleukin-13/metabolism , Lung/immunology , Male , Mice , Muscle, Smooth/cytology , Myocytes, Smooth Muscle/metabolism , Myosin Heavy Chains/metabolism , Respiratory Hypersensitivity/physiopathology
5.
NanoImpact ; 182020 Apr.
Article in English | MEDLINE | ID: mdl-32190784

ABSTRACT

Micron scale cellulose materials are "generally regarded as safe" (GRAS) as binders and thickeners in food products. However, nanocellulose materials, which have unique properties that can improve food quality and safety, have not received US-Food and Drug Administration (FDA) approval as food ingredients. In vitro and in vivo toxicological studies of ingested nanocellulose revealed minimal cytotoxicity, and no subacute in vivo toxicity. However, ingested materials may modulate gut microbial populations, or alter aspects of intestinal function not elucidated by toxicity testing, which could have important health implications. Here, we report the results of studies conducted in a rat gavage model to assess the effects of ingested cellulose nanofibrils (CNF) on the fecal microbiome and metabolome, intestinal epithelial expression of cell junction genes, and ileal cytokine production. Feces, plasma, and ilea were collected from Wistar Han rats before and after five weeks of biweekly gavages with water or cream, with or without 1% CNF. CNF altered microbial diversity, and diminished specific species that produce short chain fatty acids, and that are associated with increased serum insulin and IgA production. CNF had few effects on the fecal metabolome, with significant changes in only ten metabolites of 366 measured. Exposure to CNF also altered expression of epithelial cell junction genes, and increased production of cytokines that modulate proliferation of CD8 T cells. These perturbations likely represent initiation of an adaptive immune response, however, no associated pathology was seen within the duration of the study. Additional studies are needed to better understand the health implications of these changes in long term.

7.
ACS Nano ; 13(9): 10095-10102, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31397554

ABSTRACT

Do immature lungs have air-blood barriers that are more permeable to inhaled nanoparticles than those of fully developed mature lungs? Data supporting this notion and explaining the underlying mechanisms do not exist as far as we know. Using a rat model of postnatal lung development, here the data exactly supporting this notion, that is, significantly more gold nanoparticles (NPs) cross from the air space of the lungs to the rest of the body in neonates than in adults, are presented. Moreover, in neonates the translocation of gold NPs is not size dependent, whereas in adult animals smaller NPs cross the air-blood lung barrier much more efficiently than larger NPs. This difference in air-blood permeability in neonate versus adult animals suggests that NP translocation in the immature lungs may follow different rules than in mature lungs. Supporting this notion, we propose that the paracellular transport route may play a more significant role in NP translocation in immature animals, as suggested by protein expression studies. Findings from this study are critical to design optimal ways of inhalation drug delivery using NP nanocarriers for this age group, as well as for better understanding of the potential adverse health effects of nanoparticle exposures in infants and young children.


Subject(s)
Aging/physiology , Blood-Air Barrier/metabolism , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Animals, Newborn , Lung/growth & development , Lung/metabolism , Metal Nanoparticles/ultrastructure , Rats, Wistar
8.
Sci Rep ; 9(1): 8163, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160608

ABSTRACT

We have shown that barium [from BaSO4 nanoparticles (NPs)] was cleared from the lungs faster than other poorly soluble NPs and translocated mostly to bone. We now studied barium biokinetics in rats during Study 1: two-year inhalation exposure to 50 mg/m3 BaSO4 NP aerosols, and Study 2: single intratracheal (IT) instillation of increasing doses of BaSO4 NPs or BaCl2. Study 1 showed that lung barium content measured by inductively coupled plasma mass spectrometry increased during 360 days of BaSO4 NP aerosol exposures. An equilibrium was established from that time until 2 years. Barium concentrations in BaSO4-exposed animals were in the order (lungs > lymph nodes > hard bone > bone marrow > liver). In Study 2, there was an increase in lung barium post-IT instillation of BaSO4 NPs while barium from BaCl2 was mostly cleared by day 28. Transmission electron microscopy showed intact BaSO4 NPs in alveolar macrophages and type II epithelial cells, and in tracheobronchial lymph nodes. Using stimulated Raman scattering microscopy, specific BaSO4 Raman spectra were detected in BaSO4 NP-instilled lungs and not in other organs. Thus, we posit that barium from BaSO4 NPs translocates from the lungs mainly after dissolution. Barium ions are then incorporated mostly into the bone and other organs.


Subject(s)
Barium Sulfate/pharmacology , Lung/drug effects , Nanoparticles/chemistry , Tissue Distribution/drug effects , Aerosols/chemistry , Aerosols/pharmacology , Animals , Barium Sulfate/chemistry , Inhalation Exposure , Macrophages, Alveolar/drug effects , Rats
9.
Environ Sci Nano ; 6(7): 2105-2115, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-32133146

ABSTRACT

Cellulose is widely used as a thickener and filler in foods and drugs. It has been designated "generally regarded as safe" (GRAS). Nanocellulose (NC) has many additional potential applications designed to improve food quality and safety, but has not yet been designated as GRAS. Here we present results of toxicological studies of ingested NC in physiologically relevant in vitro and in vivo systems. In vitro studies employed a gastrointestinal tract simulator to digest two widely-used forms of NC, nanocellulose fibrils (CNF) and cellulose nanocrystals (CNC), at 0.75 and 1.5% w/w, in a fasting diet as well as in a standardized food model based on the average American diet. A triculture model of small intestinal epithelium was used to assess effects of a 24-hour incubation with the digested products (digesta) on cell layer integrity, cytotoxicity and oxidative stress. Other than a 10% increase over controls in reactive oxygen species (ROS) production with 1.5% w/w CNC, no significant changes in cytotoxicity, ROS or monolayer integrity were observed. In vivo toxicity was evaluated in rats gavaged twice weekly for five weeks with 1% w/w suspensions of CNF in either water or cream. Blood, serum, lung, liver, kidney, and small intestine were collected for analysis. No significant differences in hematology, serum markers or histology were observed between controls and rats given CNF suspensions. These findings suggest that ingested NC has little acute toxicity, and is likely non-hazardous when ingested in small quantities. Additional chronic feeding studies are required to assess long term effects, and potential detrimental effects on the gut microbiome and absorbance of essential micronutrients. These studies are underway, and their outcome will be reported in the near future.

10.
Exp Lung Res ; 44(4-5): 252-261, 2018.
Article in English | MEDLINE | ID: mdl-30295553

ABSTRACT

AIM OF STUDY: Metal contaminants contribute to adverse human health effects via acute and chronic exposures. Acute metal exposures followed by prolonged secondary metal exposures may elicit exaggerated inflammatory responses in certain individuals. The aim of this study is to determine whether repeated pulmonary exposures to zinc chloride (ZnCl2) alter subsequent responses to zinc or cerium exposures. MATERIALS AND METHODS: Rats were intratracheally (IT) instilled with physiologic saline (n = 24) or 0.05 mg/kg ZnCl2 (n = 16) twice weekly for 4 weeks. Four days after last dosing, the saline group was divided into three subgroups, each IT-instilled with either saline, ZnCl2 or CeCl3 (both at 0.1 mg/kg). The ZnCl2 pre-instilled rats were divided into two subgroups, each instilled with 0.1 mg/kg ZnCl2 or CeCl3. Biomarkers of lung injury/inflammation were assessed in bronchoalveolar lavage (BAL) fluid collected 24 hours later. Oxidative stress was evaluated as total and reduced glutathione in BAL. RESULTS: Increases in inflammatory cells, LDH, albumin, leptin, MCP-1, IP-10, fractalkine, TNFα and RANTES were observed in rats instilled with multiple PBS and then with 0.1 mg/kg ZnCl2 and CeCl3. However, rats pre-exposed repeatedly to 0.05 mg/kg ZnCl2 and then challenged with 0.1 mg/kg ZnCl2 or CeCl3 showed even more eosinophils, lymphocytes, and increased concentrations of hemoglobin and MIP-1α. Significant reduction in GSH/GSSG ratios in BAL in response to all ZnCl2 or CeCl3 exposures indicated oxidative stress. CONCLUSION: Previous exposure to zinc ions increases responsiveness to subsequent exposures to zinc and cerium ions. These findings suggest enhanced sensitization possibly due to a reduction in antioxidant defenses.


Subject(s)
Air Pollution , Chlorides/pharmacology , Inhalation Exposure , Pneumonia/chemically induced , Zinc Compounds/pharmacology , Animals , Cerium/pharmacology , Metals/pharmacology , Oxidative Stress/drug effects , Rats
11.
Langmuir ; 34(22): 6454-6461, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29754486

ABSTRACT

We explored the influence of nanoparticle (NP) surface charge and hydrophobicity on NP-biomolecule interactions by measuring the composition of adsorbed phospholipids on four NPs, namely, positively charged CeO2 and ZnO and negatively charged BaSO4 and silica-coated CeO2, after exposure to bronchoalveolar lavage fluid (BALf) obtained from rats, and to a mixture of neutral dipalmitoyl phosphatidylcholine (DPPC) and negatively charged dipalmitoyl phosphatidic acid (DPPA). The resulting NP-lipid interactions were examined by cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM). Our data show that the amount of adsorbed lipids on NPs after incubation in BALf and the DPPC/DPPA mixture was higher in CeO2 than in the other NPs, qualitatively consistent with their relative hydrophobicity. The relative concentrations of specific adsorbed phospholipids on NP surfaces were different from their relative concentrations in the BALf. Sphingomyelin was not detected in the extracted lipids from the NPs despite its >20% concentration in the BALf. AFM showed that the more hydrophobic CeO2 NPs tended to be located inside lipid vesicles, whereas less hydrophobic BaSO4 NPs appeared to be outside. In addition, cryo-TEM analysis showed that CeO2 NPs were associated with the formation of multilamellar lipid bilayers, whereas BaSO4 NPs with unilamellar lipid bilayers. These data suggest that the NP surface hydrophobicity predominantly controls the amounts and types of lipids adsorbed, as well as the nature of their interaction with phospholipids.


Subject(s)
Nanoparticles/chemistry , Phospholipids/chemistry , Wettability , Animals , Cryoelectron Microscopy , Lipid Bilayers , Rats , Silicon Dioxide/chemistry
12.
J Funct Foods ; 42: 371-378, 2018 Mar.
Article in English | MEDLINE | ID: mdl-31531127

ABSTRACT

We determined the effects of continuous access to drinking of water with a vinegar-based multi-micronutrient (VMm) supplement containing rice and fruit vinegars, vitamins, organic acids and sugars during gestation, lactation, and early adulthood in rats. Pregnant rats were provided with reverse-osmosis water or VMm water from the start of pregnancy through the time of weaning. Weaned pups consumed the same drinking water for 3-12 additional weeks. We examined fecal metabolite and microbial profiles, and other physiological parameters. Body weights were less in rats that drank VMm water. Thirty fecal metabolites involved in amino acid and dipeptide metabolism were significantly altered in VMm-supplemented rats. Analysis of microbial 16S rRNA showed enrichment of bacteria in the family S24-7 in VMm-supplemented rats, and one in Ruminococcaceae in controls. Our data show that a VMm-containing beverage can alter growth, and gut metabolism and microbial community. Future work to correlate these parameters is warranted.

13.
Part Fibre Toxicol ; 14(1): 42, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29084556

ABSTRACT

BACKGROUND: We previously showed that cerium oxide (CeO2), barium sulfate (BaSO4) and zinc oxide (ZnO) nanoparticles (NPs) exhibited different lung toxicity and pulmonary clearance in rats. We hypothesize that these NPs acquire coronas with different protein compositions that may influence their clearance from the lungs. METHODS: CeO2, silica-coated CeO2, BaSO4, and ZnO NPs were incubated in rat lung lining fluid in vitro. Then, gel electrophoresis followed by quantitative mass spectrometry was used to characterize the adsorbed proteins stripped from these NPs. We also measured uptake of instilled NPs by alveolar macrophages (AMs) in rat lungs using electron microscopy. Finally, we tested whether coating of gold NPs with albumin would alter their lung clearance in rats. RESULTS: We found that the amounts of nine proteins in the coronas formed on the four NPs varied significantly. The amounts of albumin, transferrin and α-1 antitrypsin were greater in the coronas of BaSO4 and ZnO than that of the two CeO2 NPs. The uptake of BaSO4 in AMs was less than CeO2 and silica-coated CeO2 NPs. No identifiable ZnO NPs were observed in AMs. Gold NPs coated with albumin or citrate instilled into the lungs of rats acquired the similar protein coronas and were cleared from the lungs to the same extent. CONCLUSIONS: We show that different NPs variably adsorb proteins from the lung lining fluid. The amount of albumin in the NP corona varies as does NP uptake by AMs. However, albumin coating does not affect the translocation of gold NPs across the air-blood barrier. A more extensive database of corona composition of a diverse NP library will develop a platform to help predict the effects and biokinetics of inhaled NPs.


Subject(s)
Barium Sulfate/metabolism , Cerium/metabolism , Gold/metabolism , Lung/metabolism , Metal Nanoparticles , Protein Corona , Zinc Oxide/metabolism , Adsorption , Animals , Barium Sulfate/chemistry , Barium Sulfate/toxicity , Blood-Air Barrier/metabolism , Cerium/chemistry , Cerium/toxicity , Gold/chemistry , Gold/pharmacokinetics , Gold/toxicity , Macrophages, Alveolar/metabolism , Male , Metal Nanoparticles/chemistry , Rats, Wistar , Serum Albumin, Human/metabolism , Surface Properties , Transferrin/metabolism , Zinc Oxide/chemistry , Zinc Oxide/toxicity , alpha 1-Antitrypsin/metabolism
14.
NanoImpact ; 6: 69-80, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29057373

ABSTRACT

Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.

15.
Inhal Toxicol ; 28(12): 550-560, 2016 10.
Article in English | MEDLINE | ID: mdl-27618878

ABSTRACT

Particles can be delivered to the respiratory tract of animals using various techniques. Inhalation mimics environmental exposure but requires large amounts of aerosolized NPs over a prolonged dosing time, varies in deposited dose among individual animals, and results in nasopharyngeal and fur particle deposition. Although less physiological, intratracheal (IT) instillation allows quick and precise dosing. Insufflation delivers particles in their dry form as an aerosol. We compared the distribution of neutron-activated 141CeO2 nanoparticles (5 mg/kg) in rats after (1) IT instillation, (2) left intrabronchial instillation, (3) microspraying of nanoceria suspension and (4) insufflation of nanoceria dry powder. Blood, tracheobronchial lymph nodes, liver, gastrointestinal tract, feces and urine were collected at 5 min and 24 h post-dosing. Excised lungs from each rat were dried at room temperature while inflated at a constant 30 cm water pressure. Dried lungs were then sliced into 50 pieces. The radioactivity of each lung piece and other organs was measured. The evenness index (EI) of each lung piece was calculated [EI = (µCi/mgpiece)/(µCi/mglung)]. The degree of EI value departure from 1.0 is a measure of deposition heterogeneity. We showed that the pulmonary distribution of nanoceria differs among modes of administration. Dosing by IT or microspraying resulted in similar spatial distribution. Insufflation resulted in significant deposition in the trachea and in more heterogeneous lung distribution. Our left intrabronchial instillation technique yielded a concentrated deposition into the left lung. We conclude that animal dosing techniques and devices result in varying patterns of particle deposition that will impact biokinetic and toxicity studies.


Subject(s)
Cerium/administration & dosage , Cerium/pharmacokinetics , Lung/metabolism , Metal Nanoparticles , Administration, Inhalation , Animals , Male , Neutrons , Powders , Rats , Trachea
18.
Am J Respir Cell Mol Biol ; 55(4): 521-531, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27148627

ABSTRACT

After a single or multiple intratracheal instillations of Stachybotrys chartarum (S. chartarum or black mold) spores in BALB/c mice, we characterized cytokine production, metabolites, and inflammatory patterns by analyzing mouse bronchoalveolar lavage (BAL), lung tissue, and plasma. We found marked differences in BAL cell counts, especially large increases in lymphocytes and eosinophils in multiple-dosed mice. Formation of eosinophil-rich granulomas and airway goblet cell metaplasia were prevalent in the lungs of multiple-dosed mice but not in single- or saline-dosed groups. We detected changes in the cytokine expression profiles in both the BAL and plasma. Multiple pulmonary exposures to S. chartarum induced significant metabolic changes in the lungs but not in the plasma. These changes suggest a shift from type 1 inflammation after an acute exposure to type 2 inflammation after multiple exposures to S. chartarum. Eotaxin, vascular endothelial growth factor (VEGF), MIP-1α, MIP-1ß, TNF-α, and the IL-8 analogs macrophage inflammatory protein-2 (MIP-2) and keratinocyte chemoattractant (KC), had more dramatic changes in multiple- than in single-dosed mice, and parallel the cytokines that characterize humans with histories of mold exposures versus unexposed control subjects. This repeated exposure model allows us to more realistically characterize responses to mold, such as cytokine, metabolic, and cellular changes.

19.
Toxicol Sci ; 150(1): 225-33, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26719368

ABSTRACT

To assess chemical toxicity, current high throughput screening (HTS) assays rely primarily on in vitro measurements using cultured cells. Responses frequently differ from in vivo results due to the lack of physical and humoral interactions provided by the extracellular matrix, cell-cell interactions, and other molecular components of the native organ. To more accurately reproduce organ complexity in HTS, we developed an organotypic assay using the cryopreserved precision cut lung slice (PCLS) from rats and mice. Compared to the never-frozen PCLS, their frozen-thawed counterpart slices showed viability or metabolic activity that is decreased to an extent comparable to that observed in other cryopreserved cells and tissues, but shows no differences in further changes in cell viability, mitochondrial integrity, and glutathione activity in response to the model toxin zinc chloride (ZnCl2). Notably, these measurements were successfully miniaturized so as to establish HTS capacity in a 96-well plate format. Finally, PCLS responses correlated with common markers of lung injury measured in lavage fluid from rats intratracheally instilled with ZnCl2. In summary, we establish that the cryopreserved PCLS is a feasible approach for HTS investigations in predictive toxicology.


Subject(s)
Cryopreservation , Lung/drug effects , Toxicity Tests/methods , Animals , Cell Survival/drug effects , Cells, Cultured , Chlorides/toxicity , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , In Vitro Techniques , Lung/cytology , Lung/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/metabolism , Organ Specificity , Oxidative Stress/drug effects , Primary Cell Culture , Rats, Wistar , Zinc Compounds/toxicity
20.
Nanotoxicology ; 10(6): 720-7, 2016 08.
Article in English | MEDLINE | ID: mdl-26581431

ABSTRACT

Nanoparticle (NP) pharmacokinetics and biological effects are influenced by many factors, especially surface physicochemical properties. We assessed the effects of an amorphous silica coating on the fate of zinc after intravenous (IV) injection of neutron activated uncoated (65)ZnO or silica-coated (65)ZnO NPs in male Wistar Han rats. Groups of IV-injected rats were sequentially euthanized, and 18 tissues were collected and analyzed for (65)Zn radioactivity. The protein coronas on each ZnO NP after incubation in rat plasma were analyzed by SDS-PAGE gel electrophoresis and mass spectrometry of selected gel bands. Plasma clearance for both NPs was biphasic with rapid initial and slower terminal clearance rates. Half-lives of plasma clearance of silica-coated (65)ZnO were shorter (initial - <1 min; terminal - 2.5 min) than uncoated (65)ZnO (initial - 1.9 min; terminal - 38 min). Interestingly, the silica-coated (65)ZnO group had higher (65)Zn associated with red blood cells and higher initial uptake in the liver. The (65)Zn concentrations in all the other tissues were significantly lower in the silica-coated than uncoated groups. We also found that the protein corona formed on silica-coated ZnO NPs had higher amounts of plasma proteins, particularly albumin, transferrin, A1 inhibitor 3, α-2-hs-glycoprotein, apoprotein E and α-1 antitrypsin. Surface modification with amorphous silica alters the protein corona, agglomerate size, and zeta potential of ZnO NPs, which in turn influences ZnO biokinetic behavior in the circulation. This emphasizes the critical role of the protein corona in the biokinetics, toxicology and nanomedical applications of NPs.


Subject(s)
Blood Proteins/metabolism , Nanoparticles/chemistry , Silicon Dioxide/blood , Silicon Dioxide/chemistry , Zinc Oxide/blood , Zinc Oxide/chemistry , Animals , Electrophoresis, Polyacrylamide Gel , Kinetics , Male , Metabolic Clearance Rate , Nanoparticles/analysis , Protein Corona/metabolism , Rats , Rats, Wistar , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...