Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mucosal Immunol ; 16(5): 642-657, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37392971

ABSTRACT

T follicular helper (Tfh) cells are an important component of germinal center (GC)-mediated humoral immunity. Yet, how a chronic type 1 versus protective type 2 helminth infection modulates Tfh-GC responses remains poorly understood. Here, we employ the helminth Trichuris muris model and demonstrate that Tfh cell phenotypes and GC are differentially regulated in acute versus chronic infection. The latter failed to induce Tfh-GC B cell responses, with Tfh cells expressing Τ-bet and interferon-γ. In contrast, interleukin-4-producing Tfh cells dominate responses to an acute, resolving infection. Heightened expression and increased chromatin accessibility of T helper (Th)1- and Th2 cell-associated genes are observed in chronic and acute induced Tfh cells, respectively. Blockade of the Th1 cell response by T-cell-intrinsic T-bet deletion promoted Tfh cell expansion during chronic infection, pointing to a correlation between a robust Tfh cell response and protective immunity to parasites. Finally, blockade of Tfh-GC interactions impaired type 2 immunity, revealing the critical protective role of GC-dependent Th2-like Tfh cell responses during acute infection. Collectively, these results provide new insights into the protective roles of Tfh-GC responses and identify distinct transcriptional and epigenetic features of Tfh cells that emerge during resolving or chronic T. muris infection.

2.
Cell Rep Med ; 3(10): 100766, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36198308

ABSTRACT

Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1-CTLA4-) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency.


Subject(s)
HIV Infections , Humans , CD4-Positive T-Lymphocytes , CTLA-4 Antigen/genetics , Receptors, Immunologic , RNA , T-Lymphocytes , Programmed Cell Death 1 Receptor/metabolism
3.
Nat Commun ; 12(1): 4355, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272362

ABSTRACT

Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.


Subject(s)
Cytokines/metabolism , Francisella tularensis/immunology , Immunity, Innate , Mucosal-Associated Invariant T Cells/immunology , Adjuvants, Immunologic , Animals , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Liver/immunology , Lung/immunology , Mice , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/metabolism , Phenotype , RNA-Seq , Ribitol/analogs & derivatives , Ribitol/immunology , Single-Cell Analysis , Spleen/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Transcriptome/genetics , Uracil/analogs & derivatives , Uracil/immunology , Vaccines, Attenuated/immunology
4.
Cell Rep ; 33(11): 108505, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326781

ABSTRACT

CD4+ T helper (Th) cell differentiation is controlled by lineage-specific expression of transcription factors and effector proteins, as well as silencing of lineage-promiscuous genes. Lysine methyltransferases (KMTs) comprise a major class of epigenetic enzymes that are emerging as important regulators of Th cell biology. Here, we show that the KMT DOT1L regulates Th cell function and lineage integrity. DOT1L-dependent dimethylation of lysine 79 of histone H3 (H3K79me2) is associated with lineage-specific gene expression. However, DOT1L-deficient Th cells overproduce IFN-γ under lineage-specific and lineage-promiscuous conditions. Consistent with the increased IFN-γ response, mice with a T-cell-specific deletion of DOT1L are susceptible to infection with the helminth parasite Trichuris muris and are resistant to the development of allergic lung inflammation. These results identify a central role for DOT1L in Th2 cell lineage commitment and stability and suggest that inhibition of DOT1L may provide a therapeutic strategy to limit type 2 immune responses.


Subject(s)
CD4 Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Infections/immunology , Inflammation/immunology , Methyltransferases/metabolism , Animals , Disease Models, Animal , Humans , Mice
5.
Nat Immunol ; 21(12): 1597-1610, 2020 12.
Article in English | MEDLINE | ID: mdl-33046889

ABSTRACT

The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Immunologic Memory , Malaria/immunology , Plasmodium/immunology , Transcriptome , Adoptive Transfer , Animals , Antimalarials/pharmacology , Biomarkers , Chromatin/genetics , Disease Models, Animal , Gene Expression Profiling , Humans , Malaria/parasitology , Malaria/therapy , Mice , Plasmodium/drug effects
6.
Inflamm Bowel Dis ; 26(3): 360-368, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31840738

ABSTRACT

BACKGROUND: Identifying the factors that contribute to chronicity in inflamed colitic tissue is not trivial. However, in mouse models of colitis, we can investigate at preclinical timepoints. We sought to validate murine Trichuris muris infection as a model for identification of factors that promote development of chronic colitis. METHODS: We compared preclinical changes in mice with a resolving immune response to T. muris (resistant) vs mice that fail to expel the worms and develop chronic colitis (susceptible). Findings were then validated in healthy controls and patients with suspected or confirmed IBD. RESULTS: The receptor for advanced glycation end products (RAGE) was highly dysregulated between resistant and susceptible mice before the onset of any pathological signs. Increased soluble RAGE (sRAGE) in the serum and feces of resistant mice correlated with reduced colitis scores. Mouse model findings were validated in a preliminary clinical study: fecal sRAGE was differentially expressed in patients with active IBD compared with IBD in remission, patients with IBD excluded, or healthy controls. CONCLUSIONS: Preclinical changes in mouse models can identify early pathways in the development of chronic inflammation that human studies cannot. We identified the decoy receptor sRAGE as a potential mechanism for protection against chronic inflammation in colitis in mice and humans. We propose that the RAGE pathway is clinically relevant in the onset of chronic colitis and that further study of sRAGE in IBD may provide a novel diagnostic and therapeutic target.


Subject(s)
Colitis/immunology , Intestinal Diseases, Parasitic/immunology , Receptor for Advanced Glycation End Products/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Trichuriasis/immunology , Animals , Antigens, Neoplasm , Biomarkers/metabolism , Chronic Disease , Colitis/parasitology , Colitis/pathology , Disease Susceptibility , Gene Expression Profiling , Humans , Immune Tolerance/genetics , Immunophenotyping , Inflammation Mediators/metabolism , Intestinal Diseases, Parasitic/pathology , Male , Mice , Mice, Inbred AKR , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases , RNA, Messenger/genetics , T-Lymphocytes, Helper-Inducer/pathology , Trichuriasis/pathology , Trichuris
7.
PLoS Pathog ; 14(2): e1006869, 2018 02.
Article in English | MEDLINE | ID: mdl-29470558

ABSTRACT

The intestinal immune system must be able to respond to a wide variety of infectious organisms while maintaining tolerance to non-pathogenic microbes and food antigens. The Vitamin A metabolite all-trans-retinoic acid (atRA) has been implicated in the regulation of this balance, partially by regulating innate lymphoid cell (ILC) responses in the intestine. However, the molecular mechanisms of atRA-dependent intestinal immunity and homeostasis remain elusive. Here we define a role for the transcriptional repressor Hypermethylated in cancer 1 (HIC1, ZBTB29) in the regulation of ILC responses in the intestine. Intestinal ILCs express HIC1 in a vitamin A-dependent manner. In the absence of HIC1, group 3 ILCs (ILC3s) that produce IL-22 are lost, resulting in increased susceptibility to infection with the bacterial pathogen Citrobacter rodentium. Thus, atRA-dependent expression of HIC1 in ILC3s regulates intestinal homeostasis and protective immunity.


Subject(s)
Immunity, Innate , Intestines/drug effects , Intestines/immunology , Kruppel-Like Transcription Factors/physiology , Lymphocytes/drug effects , Tretinoin/pharmacology , Animals , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/immunology , Gene Expression Regulation/drug effects , Homeostasis/drug effects , Homeostasis/genetics , Homeostasis/immunology , Immunity, Innate/drug effects , Immunity, Innate/genetics , Intestines/microbiology , Kruppel-Like Transcription Factors/genetics , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/drug effects , Signal Transduction/genetics , Tretinoin/metabolism
8.
Eur J Immunol ; 47(2): 236-239, 2017 02.
Article in English | MEDLINE | ID: mdl-28185248

ABSTRACT

Mast cells are innate immune cells that respond rapidly to infection in barrier tissues such as the skin and intestinal mucosa. Expulsion of parasitic worms in the gut involves a robust type 2 host response, and an acute mastocytosis is often generated at the site of infection. However, the role of mast cells in resistance to worm infections appears to be parasite specific. Mast cells are also involved in tissue repair, but the long-term contribution of mast cell activation after worm expulsion has not been definitively studied. In this issue of European Journal of Immunology, Sorobetea et al. [Eur. J. Immunol. 2017. 47: 257-268] demonstrate that activated mast cells persist in the large intestinal lamina propria and intraepithelial compartment long after worm expulsion, resulting in continued local and systemic presence of the mast cell protease mast cell protease 1 (MCPt-1) and enhanced intestinal permeability. In this commentary, we discuss these findings in the wider context of mast cell function in health and disease.


Subject(s)
Friends , Mastocytosis/immunology , Chymases , Humans , Intestinal Mucosa/immunology , Intestines/immunology , Mast Cells/cytology , Permeability
9.
BMC Immunol ; 17(1): 12, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27245920

ABSTRACT

BACKGROUND: Eosinophils are innate immune cells present in the intestine during steady state conditions. An intestinal eosinophilia is a hallmark of many infections and an accumulation of eosinophils is also observed in the intestine during inflammatory disorders. Classically the function of eosinophils has been associated with tissue destruction, due to the release of cytotoxic granule contents. However, recent evidence has demonstrated that the eosinophil plays a more diverse role in the immune system than previously acknowledged, including shaping adaptive immune responses and providing plasma cell survival factors during the steady state. Importantly, it is known that there are regional differences in the underlying immunology of the small and large intestine, but whether there are differences in context of the intestinal eosinophil in the steady state or inflammation is not known. RESULTS: Our data demonstrates that there are fewer IgA(+) plasma cells in the small intestine of eosinophil-deficient ΔdblGATA-1 mice compared to eosinophil-sufficient wild-type mice, with the difference becoming significant post-infection with Toxoplasma gondii. Remarkably, and in complete contrast, the absence of eosinophils in the inflamed large intestine does not impact on IgA(+) cell numbers during steady state, and is associated with a significant increase in IgA(+) cells post-infection with Trichuris muris compared to wild-type mice. Thus, the intestinal eosinophil appears to be less important in sustaining the IgA(+) cell pool in the large intestine compared to the small intestine, and in fact, our data suggests eosinophils play an inhibitory role. The dichotomy in the influence of the eosinophil over small and large intestinal IgA(+) cells did not depend on differences in plasma cell growth factors, recruitment potential or proliferation within the different regions of the gastrointestinal tract (GIT). CONCLUSIONS: We demonstrate for the first time that there are regional differences in the requirement of eosinophils for maintaining IgA+ cells between the large and small intestine, which are more pronounced during inflammation. This is an important step towards further delineation of the enigmatic functions of gut-resident eosinophils.


Subject(s)
Eosinophils/immunology , Inflammation/immunology , Intestine, Large/immunology , Intestine, Small/immunology , Plasma Cells/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Trichuriasis/immunology , Trichuris/immunology , Animals , Cells, Cultured , Cellular Microenvironment , Eosinophils/microbiology , Eosinophils/parasitology , GATA1 Transcription Factor/genetics , Immunoglobulin A/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Plasma Cells/microbiology , Plasma Cells/parasitology
10.
Elife ; 52016 Mar 03.
Article in English | MEDLINE | ID: mdl-26939790

ABSTRACT

In animal-based biomedical research, both the sex and the age of the animals studied affect disease phenotypes by modifying their susceptibility, presentation and response to treatment. The accurate reporting of experimental methods and materials, including the sex and age of animals, is essential so that other researchers can build on the results of such studies. Here we use text mining to study 15,311 research papers in which mice were the focus of the study. We find that the percentage of papers reporting the sex and age of mice has increased over the past two decades: however, only about 50% of the papers published in 2014 reported these two variables. We also compared the quality of reporting in six preclinical research areas and found evidence for different levels of sex-bias in these areas: the strongest male-bias was observed in cardiovascular disease models and the strongest female-bias was found in infectious disease models. These results demonstrate the ability of text mining to contribute to the ongoing debate about the reproducibility of research, and confirm the need to continue efforts to improve the reporting of experimental methods and materials.


Subject(s)
Biomedical Research/methods , Disease Models, Animal , Selection Bias , Age Distribution , Animals , Data Mining , Mice , Sex Distribution
11.
Inflamm Bowel Dis ; 21(6): 1248-59, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25989337

ABSTRACT

BACKGROUND: Current understanding of the onset of inflammatory bowel diseases relies heavily on data derived from animal models of colitis. However, the omission of information concerning the method used makes the interpretation of studies difficult or impossible. We assessed the current quality of methods reporting in 4 animal models of colitis that are used to inform clinical research into inflammatory bowel disease: dextran sulfate sodium, interleukin-10, CD45RB T cell transfer, and 2,4,6-trinitrobenzene sulfonic acid (TNBS). METHODS: We performed a systematic review based on PRISMA guidelines, using a PubMed search (2000-2014) to obtain publications that used a microarray to describe gene expression in colitic tissue. Methods reporting quality was scored against a checklist of essential and desirable criteria. RESULTS: Fifty-eight articles were identified and included in this review (29 dextran sulfate sodium, 15 interleukin-10, 5 T cell transfer, and 16 TNBS; some articles use more than 1 colitis model). A mean of 81.7% (SD = ±7.038) of criteria were reported across all models. Only 1 of the 58 articles reported all essential criteria on our checklist. Animal age, gender, housing conditions, and mortality/morbidity were all poorly reported. CONCLUSIONS: Failure to include all essential criteria is a cause for concern; this failure can have large impact on the quality and replicability of published colitis experiments. We recommend adoption of our checklist as a requirement for publication to improve the quality, comparability, and standardization of colitis studies and will make interpretation and translation of data to human disease more reliable.


Subject(s)
Colitis/chemically induced , Disease Models, Animal , Inflammatory Bowel Diseases/chemically induced , Research Design/standards , Animals , Checklist/standards , Dextran Sulfate , Humans , Interleukin-10 , Leukocyte Common Antigens , Trinitrobenzenesulfonic Acid
12.
PLoS One ; 9(7): e101131, 2014.
Article in English | MEDLINE | ID: mdl-25076044

ABSTRACT

There is a growing concern both inside and outside the scientific community over the lack of reproducibility of experiments. The depth and detail of reported methods are critical to the reproducibility of findings, but also for making it possible to compare and integrate data from different studies. In this study, we evaluated in detail the methods reporting in a comprehensive set of trypanosomiasis experiments that should enable valid reproduction, integration and comparison of research findings. We evaluated a subset of other parasitic (Leishmania, Toxoplasma, Plasmodium, Trichuris and Schistosoma) and non-parasitic (Mycobacterium) experimental infections in order to compare the quality of method reporting more generally. A systematic review using PubMed (2000-2012) of all publications describing gene expression in cells and animals infected with Trypanosoma spp was undertaken based on PRISMA guidelines; 23 papers were identified and included. We defined a checklist of essential parameters that should be reported and have scored the number of those parameters that are reported for each publication. Bibliometric parameters (impact factor, citations and h-index) were used to look for association between Journal and Author status and the quality of method reporting. Trichuriasis experiments achieved the highest scores and included the only paper to score 100% in all criteria. The mean of scores achieved by Trypanosoma articles through the checklist was 65.5% (range 32-90%). Bibliometric parameters were not correlated with the quality of method reporting (Spearman's rank correlation coefficient <-0.5; p>0.05). Our results indicate that the quality of methods reporting in experimental parasitology is a cause for concern and it has not improved over time, despite there being evidence that most of the assessed parameters do influence the results. We propose that our set of parameters be used as guidelines to improve the quality of the reporting of experimental infection models as a pre-requisite for integrating and comparing sets of data.


Subject(s)
Infectious Disease Medicine/standards , Microbiological Techniques/standards , Parasitology/standards , Animals , Infectious Disease Medicine/methods , Parasitology/methods , Periodicals as Topic , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...