Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 13(591)2021 04 28.
Article in English | MEDLINE | ID: mdl-33910978

ABSTRACT

Insulin resistance is a key event in type 2 diabetes onset and a major comorbidity of obesity. It results from a combination of fat excess-triggered defects, including lipotoxicity and metaflammation, but the causal mechanisms remain difficult to identify. Here, we report that hyperactivation of the tyrosine phosphatase SHP2 found in Noonan syndrome (NS) led to an unsuspected insulin resistance profile uncoupled from altered lipid management (for example, obesity or ectopic lipid deposits) in both patients and mice. Functional exploration of an NS mouse model revealed this insulin resistance phenotype correlated with constitutive inflammation of tissues involved in the regulation of glucose metabolism. Bone marrow transplantation and macrophage depletion improved glucose homeostasis and decreased metaflammation in the mice, highlighting a key role of macrophages. In-depth analysis of bone marrow-derived macrophages in vitro and liver macrophages showed that hyperactive SHP2 promoted a proinflammatory phenotype, modified resident macrophage homeostasis, and triggered monocyte infiltration. Consistent with a role of SHP2 in promoting inflammation-driven insulin resistance, pharmaceutical SHP2 inhibition in obese diabetic mice improved insulin sensitivity even better than conventional antidiabetic molecules by specifically reducing metaflammation and alleviating macrophage activation. Together, these results reveal that SHP2 hyperactivation leads to inflammation-triggered metabolic impairments and highlight the therapeutical potential of SHP2 inhibition to ameliorate insulin resistance.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Adipose Tissue , Animals , Humans , Inflammation , Macrophages , Mice , Mice, Knockout
2.
Acta Diabetol ; 58(7): 881-897, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33723651

ABSTRACT

AIMS: Liraglutide controls type 2 diabetes (T2D) and inflammation. Gut microbiota regulates the immune system and causes at least in part type 2 diabetes. We here evaluated whether liraglutide regulates T2D through both gut microbiota and immunity in dysmetabolic mice. METHODS: Diet-induced dysmetabolic mice were treated for 14 days with intraperitoneal injection of liraglutide (100 µg/kg) or with vehicle or Exendin 4 (10 µg/kg) as controls. Various metabolic parameters, the intestinal immune cells were characterized and the 16SrDNA gene sequenced from the gut. The causal role of gut microbiota was shown using large spectrum antibiotics and by colonization of germ-free mice with the gut microbiota from treated mice. RESULTS: Besides, the expected metabolic impacts liraglutide treatment induced a specific gut microbiota specific signature when compared to vehicle or Ex4-treated mice. However, liraglutide only increased glucose-induced insulin secretion, reduced the frequency of Th1 lymphocytes, and increased that of TReg in the intestine. These effects were abolished by a concomitant antibiotic treatment. Colonization of germ-free mice with gut microbiota from liraglutide-treated diabetic mice improved glucose-induced insulin secretion and regulated the intestinal immune system differently from what observed in germ-free mice colonized with microbiota from non-treated diabetic mice. CONCLUSIONS: Altogether, our result demonstrated first the influence of liraglutide on gut microbiota and the intestinal immune system which could at least in part control glucose-induced insulin secretion.


Subject(s)
Gastrointestinal Microbiome/drug effects , Immune System/drug effects , Insulin Secretion/drug effects , Intestinal Mucosa/drug effects , Liraglutide/pharmacology , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL
3.
Nat Commun ; 12(1): 1483, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674611

ABSTRACT

Acute myocardial infarction is a common condition responsible for heart failure and sudden death. Here, we show that following acute myocardial infarction in mice, CD8+ T lymphocytes are recruited and activated in the ischemic heart tissue and release Granzyme B, leading to cardiomyocyte apoptosis, adverse ventricular remodeling and deterioration of myocardial function. Depletion of CD8+ T lymphocytes decreases apoptosis within the ischemic myocardium, hampers inflammatory response, limits myocardial injury and improves heart function. These effects are recapitulated in mice with Granzyme B-deficient CD8+ T cells. The protective effect of CD8 depletion on heart function is confirmed by using a model of ischemia/reperfusion in pigs. Finally, we reveal that elevated circulating levels of GRANZYME B in patients with acute myocardial infarction predict increased risk of death at 1-year follow-up. Our work unravels a deleterious role of CD8+ T lymphocytes following acute ischemia, and suggests potential therapeutic strategies targeting pathogenic CD8+ T lymphocytes in the setting of acute myocardial infarction.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Granzymes/genetics , Granzymes/metabolism , Heart/physiopathology , Ventricular Remodeling/physiology , Animals , Apoptosis , CD8-Positive T-Lymphocytes/pathology , Disease Models, Animal , Female , Heart Failure/metabolism , Heart Failure/pathology , Homeodomain Proteins/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/metabolism , Myocardium/pathology , Swine , Transcriptome
4.
Clin Transl Sci ; 13(3): 529-538, 2020 05.
Article in English | MEDLINE | ID: mdl-31981449

ABSTRACT

The long duration of animal models represents a clear limitation to quickly evaluate the efficacy of drugs targeting nonalcoholic steatohepatitis (NASH). We, therefore, developed a rapid mouse model of liver inflammation (i.e., the mouse fed a high-fat/high-cholesterol diet, where cyclodextrin is co-administered to favor hepatic cholesterol loading, liver inflammation, and NASH within 3 weeks), and evaluated the effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist elafibranor (ELA). C57BL6/J mice were fed a 60% high-fat, 1.25% cholesterol, and 0.5% cholic acid diet with 2% cyclodextrin in drinking water (HFCC/CDX diet) for 3 weeks. After 1 week of the diet, mice were treated orally with vehicle or ELA 20 mg/kg q.d. for 2 weeks. Compared with vehicle, ELA markedly reduced liver lipids and nonalcoholic fatty liver disease activity scoring, through steatosis, inflammation, and fibrosis (all P < 0.01 vs. vehicle). Flow cytometry analysis showed that ELA significantly improved the HFCC/CDX diet-induced liver inflammation by preventing the increase in total number of immune cells (CD45+), Kupffer cells, dendritic cells, and monocytes population, as well as the reduction in natural killer and natural killer T cells, and by blocking conversion of T cells in regulatory T cells. ELA did not alter pyroptosis (Gasdermin D), but significantly reduced necroptosis (cleaved RIP3) and apoptosis (cleaved caspase 3) in the liver. In conclusion, ELA showed strong benefits on NASH, including improvement in hepatic inflammation, necroptosis, and apoptosis in the 3-week NASH mouse. This preclinical model will be useful to rapidly detect the effects of novel drugs targeting NASH.


Subject(s)
Chalcones/pharmacology , Liver/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Propionates/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/immunology , Chalcones/therapeutic use , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Liver/immunology , Liver/pathology , Male , Mice , Necroptosis/drug effects , Necroptosis/immunology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology , Propionates/therapeutic use
5.
Rev Endocr Metab Disord ; 20(4): 407-414, 2019 12.
Article in English | MEDLINE | ID: mdl-31705258

ABSTRACT

Despite the development of new drugs and therapeutic strategies, mortality and morbidity related to heart failure (HF) remains high. It is also the leading cause of global mortality. Several concepts have been proposed to explore the underlying pathogenesis of HF, but there is still a strong need for more specific and complementary therapeutic options. In recent years, accumulating evidence has demonstrated that changes in the composition of gut microbiota, referred to as dysbiosis, might play a pivotal role in the development of several diseases, including HF. HF-associated decreased cardiac output, resulting in bowell wall oedema and intestine ischaemia, can alter gut structure, peamibility and function. These changes would favour bacterial translocation, exacerbating HF pathogenesis at least partly through activation of systemic inflammation. Although our knowledge of the precise molecular mechanisms by which gut dysbiosis influance HF is still limited, a growing body of evidence has recently demonstrated the impact of a series of gut microbiome-derived metabolites, such as trimetylamine N-oxide, short-chain fatty acids or secondary bile acids, which have been shown to play critical roles in cardiac health and disease. This review will summarize the role of gut microbiota and its metabolites in the pathogenesis of HF. Current and future preventive and therapeutic strategies to prevent HF by an adequate modulation of the microbiome and its derived metabolites are also discussed.


Subject(s)
Gastrointestinal Microbiome/physiology , Heart Failure/microbiology , Animals , Dysbiosis/microbiology , Humans
6.
Biochem Biophys Rep ; 18: 100620, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30899802

ABSTRACT

Neuronal nitric oxide synthase (NOS1) has been consistently shown to be the predominant isoform of NOS and/or NOS-derived NO that may be involved in the myocardial remodeling including cardiac hypertrophy. However, the direct functional contribution of NOS1 in this process remains to be elucidated. Therefore, in the present study, we attempted to use silent RNA and adenovirus mediated silencing or overexpression to investigate the role of NOS1 and the associated molecular signaling mechanisms during OKphenylephrine (PE)-induced cardiac hypertrophy growth in neonatal rat ventricular cardiomyocytes (NRVMs). We found that the expression of NOS1 was enhanced in PE-induced hypertrophic cardiomyocytes. Moreover, LVNIO treatment, a selective NOS1 inhibitor, significantly decreased PE-induced NRVMs hypertrophy and [3H]-leucine incorporation. We demonstrated that NOS1 gene silencing attenuated both the increased size and the transcriptional activity of the hypertrophic marker atrial natriuretic factor (ANF) induced by PE stimulation. Further investigation suggested that deficiency of NOS1-induced diminished NRVMS hypertrophy resulted in decreased calcineurin protein expression and activity (assessed by measuring the transcriptional activity of NFAT) and, an increased activity of the anti-hypertrophic pathway, GSK-3ß (estimated by its augmented phosphorylated level). In contrast, exposing the NOS1 overexpressed NRVMs to PE-treatment further increased the hypertrophic growth, ANF transcriptional activity and calcineurin activity. Together, the results of the present study suggest that NOS1 is directly involved in controlling the development of cardiomyocyte hypertrophy.

7.
FASEB Bioadv ; 1(4): 227-245, 2019 Apr.
Article in English | MEDLINE | ID: mdl-32123829

ABSTRACT

Alarmins and damage-associated molecular patterns (DAMPs) are powerful inflammatory mediators, capable of initiating and maintaining sterile inflammation during acute or chronic tissue injury. Recent evidence suggests that alarmins/DAMPs may also trigger tissue regeneration and repair, suggesting a potential contribution to tissue fibrogenesis. High mobility group B1 (HMGB1), a bona fide alarmin/DAMP, may be released passively by necrotic cells or actively secreted by innate immune cells. Macrophages can release large amounts of HMGB1 and play a key role in wound healing and regeneration processes. Here, we hypothesized that macrophages may be a key source of HMGB1 and thereby contribute to wound healing and fibrogenesis. Surprisingly, cell-specific deletion approaches, demonstrated that macrophage-derived HMGB1 is not involved in tissue fibrogenesis in multiple organs with different underlying pathologies. Compared to control HMGB1Flox mice, mice with macrophage-specific HMGB1 deletion (HMGB1ΔMac) do not display any modification of fibrogenesis in the liver after CCL4 or thioacetamide treatment and bile duct ligation; in the kidney following unilateral ureter obstruction; and in the heart after transverse aortic constriction. Of note, even under thermoneutral housing, known to exacerbate inflammation and fibrosis features, HMGB1ΔMac mice do not show impairment of fibrogenesis. In conclusion, our study clearly establishes that macrophage-derived HMGB1 does not contribute to tissue repair and fibrogenesis.

8.
Cardiovasc Res ; 115(6): 1078-1091, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30329023

ABSTRACT

AIMS: This study explored the lateral crest structures of adult cardiomyocytes (CMs) within healthy and diseased cardiac tissue. METHODS AND RESULTS: Using high-resolution electron and atomic force microscopy, we performed an exhaustive quantitative analysis of the three-dimensional (3D) structure of the CM lateral surface in different cardiac compartments from various mammalian species (mouse, rat, cow, and human) and determined the technical pitfalls that limit its observation. Although crests were observed in nearly all CMs from all heart compartments in all species, we showed that their heights, dictated by the subsarcolemmal mitochondria number, substantially differ between compartments from one species to another and tightly correlate with the sarcomere length. Differences in crest heights also exist between species; for example, the similar cardiac compartments in cows and humans exhibit higher crests than rodents. Unexpectedly, we found that lateral surface crests establish tight junctional contacts with crests from neighbouring CMs. Consistently, super-resolution SIM or STED-based immunofluorescence imaging of the cardiac tissue revealed intermittent claudin-5-claudin-5 interactions in trans via their extracellular part and crossing the basement membrane. Finally, we found a loss of crest structures and crest-crest contacts in diseased human CMs and in an experimental mouse model of left ventricle barometric overload. CONCLUSION: Overall, these results provide the first evidence for the existence of differential CM surface crests in the cardiac tissue as well as the existence of CM-CM direct physical contacts at their lateral face through crest-crest interactions. We propose a model in which this specific 3D organization of the CM lateral membrane ensures the myofibril/myofiber alignment and the overall cardiac tissue cohesion. A potential role in the control of sarcomere relaxation and of diastolic ventricular dysfunction is also discussed. Whether the loss of CM surface crests constitutes an initial and common event leading to the CM degeneration and the setting of heart failure will need further investigation.


Subject(s)
Cell Membrane/ultrastructure , Myocytes, Cardiac/ultrastructure , Aged , Aged, 80 and over , Animals , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cattle , Cell Membrane/metabolism , Claudin-5/metabolism , Cryoelectron Microscopy , Disease Models, Animal , Female , Humans , Male , Mice, Inbred C57BL , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Middle Aged , Mitochondria, Heart/ultrastructure , Myocytes, Cardiac/metabolism , Rats, Wistar , Sarcomeres/ultrastructure , Species Specificity , Tight Junctions/metabolism , Tight Junctions/ultrastructure
9.
J Exp Med ; 213(7): 1353-74, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27353089

ABSTRACT

Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators.


Subject(s)
Calcium Signaling , Calcium/metabolism , Mast Cells/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Myofibrils/metabolism , Animals , Carboxypeptidases A/genetics , Carboxypeptidases A/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Mice , Mice, Knockout , Myocardial Contraction/genetics , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Myofibrils/pathology , Proteolysis , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism
10.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G1091-101, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27033119

ABSTRACT

Periodontitis and type 2 diabetes are connected pandemic diseases, and both are risk factors for cardiovascular complications. Nevertheless, the molecular factors relating these two chronic pathologies are poorly understood. We have shown that, in response to a long-term fat-enriched diet, mice present particular gut microbiota profiles related to three metabolic phenotypes: diabetic-resistant (DR), intermediate (Inter), and diabetic-sensitive (DS). Moreover, many studies suggest that a dysbiosis of periodontal microbiota could be associated with the incidence of metabolic and cardiac diseases. We investigated whether periodontitis together with the periodontal microbiota may also be associated with these different cardiometabolic phenotypes. We report that the severity of glucose intolerance is related to the severity of periodontitis and cardiac disorders. In detail, alveolar bone loss was more accentuated in DS than Inter, DR, and normal chow-fed mice. Molecular markers of periodontal inflammation, such as TNF-α and plasminogen activator inhibitor-1 mRNA levels, correlated positively with both alveolar bone loss and glycemic index. Furthermore, the periodontal microbiota of DR mice was dominated by the Streptococcaceae family of the phylum Firmicutes, whereas the periodontal microbiota of DS mice was characterized by increased Porphyromonadaceae and Prevotellaceae families. Moreover, in DS mice the periodontal microbiota was indicated by an abundance of the genera Prevotella and Tannerella, which are major periodontal pathogens. PICRUSt analysis of the periodontal microbiome highlighted that prenyltransferase pathways follow the cardiometabolic adaptation to a high-fat diet. Finally, DS mice displayed a worse cardiac phenotype, percentage of fractional shortening, heart rhythm, and left ventricle weight-to-tibia length ratio than Inter and DR mice. Together, our data show that periodontitis combined with particular periodontal microbiota and microbiome is associated with metabolic adaptation to a high-fat diet related to the severity of cardiometabolic alteration.


Subject(s)
Adaptation, Physiological , Cardiovascular Diseases/metabolism , Diet, High-Fat , Glucose Intolerance , Microbiota , Periodontitis/microbiology , Ventricular Function , Animals , Cardiovascular Diseases/complications , Cardiovascular Diseases/microbiology , Dimethylallyltranstransferase/metabolism , Dysbiosis/microbiology , Male , Mice , Mice, Inbred C57BL , Periodontitis/complications , Plasminogen Activator Inhibitor 1/metabolism , Prevotella/isolation & purification , Streptococcaceae/isolation & purification , Tumor Necrosis Factor-alpha/metabolism
11.
Circulation ; 131(4): 390-400; discussion 400, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25369805

ABSTRACT

BACKGROUND: Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and is regulated by various signaling pathways. However, the molecular mechanisms that negatively regulate these signal transduction pathways remain poorly understood. METHODS AND RESULTS: Here, we characterized Carabin, a protein expressed in cardiomyocytes that was downregulated in cardiac hypertrophy and human heart failure. Four weeks after transverse aortic constriction, Carabin-deficient (Carabin(-/-)) mice developed exaggerated cardiac hypertrophy and displayed a strong decrease in fractional shortening (14.6±1.6% versus 27.6±1.4% in wild type plus transverse aortic constriction mice; P<0.0001). Conversely, compensation of Carabin loss through a cardiotropic adeno-associated viral vector encoding Carabin prevented transverse aortic constriction-induced cardiac hypertrophy with preserved fractional shortening (39.9±1.2% versus 25.9±2.6% in control plus transverse aortic constriction mice; P<0.0001). Carabin also conferred protection against adrenergic receptor-induced hypertrophy in isolated cardiomyocytes. Mechanistically, Carabin carries out a tripartite suppressive function. Indeed, Carabin, through its calcineurin-interacting site and Ras/Rab GTPase-activating protein domain, functions as an endogenous inhibitor of calcineurin and Ras/extracellular signal-regulated kinase prohypertrophic signaling. Moreover, Carabin reduced Ca(2+)/calmodulin-dependent protein kinase II activation and prevented nuclear export of histone deacetylase 4 after adrenergic stimulation or myocardial pressure overload. Finally, we showed that Carabin Ras-GTPase-activating protein domain and calcineurin-interacting domain were both involved in the antihypertrophic action of Carabin. CONCLUSIONS: Our study identifies Carabin as a negative regulator of key prohypertrophic signaling molecules, calcineurin, Ras, and Ca(2+)/calmodulin-dependent protein kinase II and implicates Carabin in the development of cardiac hypertrophy and failure.


Subject(s)
Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/metabolism , Cardiomegaly/prevention & control , GTPase-Activating Proteins/biosynthesis , Genes, ras/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Cells, Cultured , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Rats , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...