Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 15(9): 15456-74, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25257525

ABSTRACT

Expression of the pro-angiogenic vascular endothelial growth factor (VEGF) stimulates angiogenesis and correlates with the progression of osteoarthritis. Mechanical joint loading seems to contribute to this cartilage pathology. Cyclic equibiaxial strains of 1% to 16% for 12 h, respectively, induced expression of VEGF in human chondrocytes dose- and frequency-dependently. Stretch-mediated VEGF induction was more prominent in the human chondrocyte cell line C-28/I2 than in primary articular chondrocytes. Twelve hours of 8% stretch induced VEGF expression to 175% of unstrained controls for at least 24 h post stretching, in promoter reporter and enzyme-linked immunosorbent assay (ELISA) studies. High affinity soluble VEGF-receptor, sVEGFR-1/sFlt-1 was less stretch-inducible than its ligand, VEGF-A, in these cells. ELISA assays demonstrated, for the first time, a stretch-mediated suppression of sVEGFR-1 secretion 24 h after stretching. Overall, strained chondrocytes activate their VEGF expression, but in contrast, strain appears to suppress the secretion of the major VEGF decoy receptor (sVEGFR-1/sFlt-1). The latter may deplete a biologically relevant feedback regulation to inhibit destructive angiogenesis in articular cartilage. Our data suggest that mechanical stretch can induce morphological changes in human chondrocytes in vitro. More importantly, it induces disturbed VEGF signaling, providing a molecular mechanism for a stress-induced increase in angiogenesis in cartilage pathologies.


Subject(s)
Chondrocytes/metabolism , Gene Expression Regulation , Stress, Mechanical , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor Receptor-1/biosynthesis , Cartilage, Articular/cytology , Cell Line , Cell Shape , Cells, Cultured , Chondrocytes/ultrastructure , Enzyme-Linked Immunosorbent Assay , Genes, Reporter , Humans , In Vitro Techniques , Microscopy, Electron, Scanning , Primary Cell Culture , Promoter Regions, Genetic , Time Factors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics
2.
Mol Pharmacol ; 78(1): 105-13, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20354103

ABSTRACT

We demonstrated recently that opioid-induced activation of phospholipase D2 (PLD2) enhances mu- (MOPr) and delta-opioid receptor endocytosis/recycling and thus reduces the development of opioid receptor desensitization and tolerance. However, the mechanistic basis for the PLD2-mediated induction of opioid receptor endocytosis is currently unknown. Here we show that PLD2-generated phosphatidic acid (PA) might play a key role in facilitating the endocytosis of opioid receptors. However, PLD2-derived PA is known to be further converted to diacylglycerol (DAG) by PA phosphohydrolase (PPAP2). In fact, blocking of PA phosphohydrolase activity by propranolol or PPAP2-short interfering RNA (siRNA) transfection significantly attenuated agonist-induced opioid receptor endocytosis. The primary importance of PA-derived DAG in the induction of opioid receptor endocytosis was further supported by the finding that increasing the DAG level by inhibiting the reconversion of DAG into PA with the DAG kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2,3-dihydro-2-thioxo-4(1H)quinazolinone (R59949) or the addition of the synthetic cell-permeable DAG analog 1,2-dioctanoyl-sn-glycerol (DOG), further increased the agonist-induced opioid receptor endocytosis. Moreover, the addition of DOG bypasses the PLD2-siRNA- or PPAP2-siRNA-mediated impairment of DAG synthesis and resulted in a restoration of agonist-induced opioid receptor internalization. Further studies established a functional link between PA-derived DAG and the activation of p38 mitogen-activated protein kinase (MAPK) and the subsequent phosphorylation of the Rab5 effector early endosome antigen 1, which has been demonstrated recently to be required for the induction of MOPr endocytosis. Taken together, our results revealed that the regulation of opioid receptor endocytosis by PLD2 involves the conversion of its product PA to DAG resulting in an activation of the p38 MAPK pathway.


Subject(s)
Endocytosis , Phosphatidic Acids/metabolism , Phospholipase D/metabolism , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Signal Transduction , Base Sequence , Cell Line , DNA Primers , Endocytosis/drug effects , Humans , Piperidines/pharmacology , Quinazolinones/pharmacology , Radioligand Assay
SELECTION OF CITATIONS
SEARCH DETAIL