Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Clin Med ; 13(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38592057

ABSTRACT

(1) Background: SeptiCyte RAPID is a molecular test for discriminating sepsis from non-infectious systemic inflammation, and for estimating sepsis probabilities. The objective of this study was the clinical validation of SeptiCyte RAPID, based on testing retrospectively banked and prospectively collected patient samples. (2) Methods: The cartridge-based SeptiCyte RAPID test accepts a PAXgene blood RNA sample and provides sample-to-answer processing in ~1 h. The test output (SeptiScore, range 0-15) falls into four interpretation bands, with higher scores indicating higher probabilities of sepsis. Retrospective (N = 356) and prospective (N = 63) samples were tested from adult patients in ICU who either had the systemic inflammatory response syndrome (SIRS), or were suspected of having/diagnosed with sepsis. Patients were clinically evaluated by a panel of three expert physicians blinded to the SeptiCyte test results. Results were interpreted under either the Sepsis-2 or Sepsis-3 framework. (3) Results: Under the Sepsis-2 framework, SeptiCyte RAPID performance for the combined retrospective and prospective cohorts had Areas Under the ROC Curve (AUCs) ranging from 0.82 to 0.85, a negative predictive value of 0.91 (sensitivity 0.94) for SeptiScore Band 1 (score range 0.1-5.0; lowest risk of sepsis), and a positive predictive value of 0.81 (specificity 0.90) for SeptiScore Band 4 (score range 7.4-15; highest risk of sepsis). Performance estimates for the prospective cohort ranged from AUC 0.86-0.95. For physician-adjudicated sepsis cases that were blood culture (+) or blood, urine culture (+)(+), 43/48 (90%) of SeptiCyte scores fell in Bands 3 or 4. In multivariable analysis with up to 14 additional clinical variables, SeptiScore was the most important variable for sepsis diagnosis. A comparable performance was obtained for the majority of patients reanalyzed under the Sepsis-3 definition, although a subgroup of 16 patients was identified that was called septic under Sepsis-2 but not under Sepsis-3. (4) Conclusions: This study validates SeptiCyte RAPID for estimating sepsis probability, under both the Sepsis-2 and Sepsis-3 frameworks, for hospitalized patients on their first day of ICU admission.

4.
BMC Med ; 18(1): 185, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32690014

ABSTRACT

BACKGROUND: There is an urgent need to develop biomarkers that stratify risk of bacterial infection in order to support antimicrobial stewardship in emergency hospital admissions. METHODS: We used computational machine learning to derive a rule-out blood transcriptomic signature of bacterial infection (SeptiCyte™ TRIAGE) from eight published case-control studies. We then validated this signature by itself in independent case-control data from more than 1500 samples in total, and in combination with our previously published signature for viral infections (SeptiCyte™ VIRUS) using pooled data from a further 1088 samples. Finally, we tested the performance of these signatures in a prospective observational cohort of emergency department (ED) patients with fever, and we used the combined SeptiCyte™ signature in a mixture modelling approach to estimate the prevalence of bacterial and viral infections in febrile ED patients without microbiological diagnoses. RESULTS: The combination of SeptiCyte™ TRIAGE with our published signature for viral infections (SeptiCyte™ VIRUS) discriminated bacterial and viral infections in febrile ED patients, with a receiver operating characteristic area under the curve of 0.95 (95% confidence interval 0.90-1), compared to 0.79 (0.68-0.91) for WCC and 0.73 (0.61-0.86) for CRP. At pre-test probabilities 0.35 and 0.72, the combined SeptiCyte™ score achieved a negative predictive value for bacterial infection of 0.97 (0.90-0.99) and 0.86 (0.64-0.96), compared to 0.90 (0.80-0.94) and 0.66 (0.48-0.79) for WCC and 0.88 (0.69-0.95) and 0.60 (0.31-0.72) for CRP. In a mixture modelling approach, the combined SeptiCyte™ score estimated that 24% of febrile ED cases receiving antibacterials without a microbiological diagnosis were due to viral infections. Our analysis also suggested that a proportion of patients with bacterial infection recovered without antibacterials. CONCLUSIONS: Blood transcriptional biomarkers offer exciting opportunities to support precision antibacterial prescribing in ED and improve diagnostic classification of patients without microbiologically confirmed infections.

5.
J Intensive Care ; 7: 13, 2019.
Article in English | MEDLINE | ID: mdl-30828456

ABSTRACT

BACKGROUND: Differentiating sepsis from the systemic inflammatory response syndrome (SIRS) in critical care patients is challenging, especially before serious organ damage is evident, and with variable clinical presentations of patients and variable training and experience of attending physicians. Our objective was to describe and quantify physician agreement in diagnosing SIRS or sepsis in critical care patients as a function of available clinical information, infection site, and hospital setting. METHODS: We conducted a post hoc analysis of previously collected data from a prospective, observational trial (N = 249 subjects) in intensive care units at seven US hospitals, in which physicians at different stages of patient care were asked to make diagnostic calls of either SIRS, sepsis, or indeterminate, based on varying amounts of available clinical information (clinicaltrials.gov identifier: NCT02127502). The overall percent agreement and the free-marginal, inter-observer agreement statistic kappa (κ free) were used to quantify agreement between evaluators (attending physicians, site investigators, external expert panelists). Logistic regression and machine learning techniques were used to search for significant variables that could explain heterogeneity within the indeterminate and SIRS patient subgroups. RESULTS: Free-marginal kappa decreased between the initial impression of the attending physician and (1) the initial impression of the site investigator (κ free 0.68), (2) the consensus discharge diagnosis of the site investigators (κ free 0.62), and (3) the consensus diagnosis of the external expert panel (κ free 0.58). In contrast, agreement was greatest between the consensus discharge impression of site investigators and the consensus diagnosis of the external expert panel (κ free 0.79). When stratified by infection site, κ free for agreement between initial and later diagnoses had a mean value + 0.24 (range - 0.29 to + 0.39) for respiratory infections, compared to + 0.70 (range + 0.42 to + 0.88) for abdominal + urinary + other infections. Bioinformatics analysis failed to clearly resolve the indeterminate diagnoses and also failed to explain why 60% of SIRS patients were treated with antibiotics. CONCLUSIONS: Considerable uncertainty surrounds the differential clinical diagnosis of sepsis vs. SIRS, especially before organ damage has become highly evident, and for patients presenting with respiratory clinical signs. Our findings underscore the need to provide physicians with accurate, timely diagnostic information in evaluating possible sepsis.

6.
Am J Respir Crit Care Med ; 198(7): 903-913, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29624409

ABSTRACT

RATIONALE: A molecular test to distinguish between sepsis and systemic inflammation of noninfectious etiology could potentially have clinical utility. OBJECTIVES: This study evaluated the diagnostic performance of a molecular host response assay (SeptiCyte LAB) designed to distinguish between sepsis and noninfectious systemic inflammation in critically ill adults. METHODS: The study employed a prospective, observational, noninterventional design and recruited a heterogeneous cohort of adult critical care patients from seven sites in the United States (n = 249). An additional group of 198 patients, recruited in the large MARS (Molecular Diagnosis and Risk Stratification of Sepsis) consortium trial in the Netherlands ( www.clinicaltrials.gov identifier NCT01905033), was also tested and analyzed, making a grand total of 447 patients in our study. The performance of SeptiCyte LAB was compared with retrospective physician diagnosis by a panel of three experts. MEASUREMENTS AND MAIN RESULTS: In receiver operating characteristic curve analysis, SeptiCyte LAB had an estimated area under the curve of 0.82-0.89 for discriminating sepsis from noninfectious systemic inflammation. The relative likelihood of sepsis versus noninfectious systemic inflammation was found to increase with increasing test score (range, 0-10). In a forward logistic regression analysis, the diagnostic performance of the assay was improved only marginally when used in combination with other clinical and laboratory variables, including procalcitonin. The performance of the assay was not significantly affected by demographic variables, including age, sex, or race/ethnicity. CONCLUSIONS: SeptiCyte LAB appears to be a promising diagnostic tool to complement physician assessment of infection likelihood in critically ill adult patients with systemic inflammation. Clinical trial registered with www.clinicaltrials.gov (NCT01905033 and NCT02127502).


Subject(s)
Critical Care/methods , Intensive Care Units , Sepsis/diagnosis , Serum Bactericidal Test/methods , Systemic Inflammatory Response Syndrome/diagnosis , Adult , Aged , Cohort Studies , Critical Illness , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Netherlands , Prospective Studies , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Sepsis/blood , Systemic Inflammatory Response Syndrome/blood , United States
7.
Crit Care Med ; 45(4): e418-e425, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27655322

ABSTRACT

OBJECTIVES: SeptiCyte Lab (Immunexpress, Seattle, WA), a molecular signature measuring the relative expression levels of four host messenger RNAs, was developed to discriminate critically ill adults with infection-positive versus infection-negative systemic inflammation. The objective was to assess the performance of Septicyte Lab in critically ill pediatric patients. DESIGN: Prospective observational study. SETTING: Pediatric and Cardiac ICUs, Seattle Children's Hospital, Seattle, WA. PATIENTS: A cohort of 40 children with clinically overt severe sepsis syndrome and 30 children immediately postcardiopulmonary bypass surgery was recruited. The clinically overt severe sepsis syndrome children had confirmed or highly suspected infection (microbial culture orders, antimicrobial prescription), two or more systemic inflammatory response syndrome criteria (including temperature and leukocyte criteria), and at least cardiovascular ± pulmonary organ dysfunction. INTERVENTIONS: None (observational study only). MEASUREMENTS AND MAIN RESULTS: Next-generation RNA sequencing was conducted on PAXgene blood RNA samples, successfully for 35 of 40 (87.5%) of the clinically overt severe sepsis syndrome patients and 29 of 30 (96.7%) of the postcardiopulmonary bypass patients. Forty patient samples (~ 60% of cohort) were reanalyzed by reverse transcription-quantitative polymerase chain reaction, to check for concordance with next-generation sequencing results. Postcardiopulmonary bypass versus clinically overt severe sepsis syndrome descriptors included the following: age, 7.3 ± 5.5 versus 9.0 ± 6.6 years; gender, 41% versus 49% male; Pediatric Risk of Mortality, version III, 7.0 ± 4.6 versus 8.7 ± 6.4; Pediatric Logistic Organ Dysfunction, version II, 5.1 ± 2.2 versus 4.8 ± 2.8. SeptiCyte Lab strongly differentiated postcardiopulmonary bypass and clinically overt severe sepsis syndrome patients by receiver operating characteristic curve analysis, with an area-under-curve value of 0.99 (95% CI, 0.96-1.00). Equivalent performance was found using reverse transcription-quantitative polymerase chain reaction. There was no significant correlation between the score produced by the SeptiCyte Lab test and measures of illness severity, immune compromise, or microbial culture status. CONCLUSIONS: SeptiCyte Lab is able to discriminate clearly between clinically well-defined and homogeneous postcardiopulmonary bypass and clinically overt severe sepsis syndrome groups in children. A broader investigation among children with more heterogeneous inflammation-associated diagnoses and care settings is warranted.


Subject(s)
Gene Expression Profiling/methods , RNA, Messenger/analysis , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/genetics , Adolescent , Area Under Curve , Cardiopulmonary Bypass , Child , Child, Preschool , Critical Illness , Diagnosis, Differential , Female , Genotype , Humans , Infant , Inflammation/diagnosis , Inflammation/genetics , Male , Oligonucleotide Array Sequence Analysis , Postoperative Period , Prospective Studies , ROC Curve , Severity of Illness Index , Systemic Inflammatory Response Syndrome/microbiology
8.
PLoS Med ; 12(12): e1001916, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26645559

ABSTRACT

BACKGROUND: Systemic inflammation is a whole body reaction having an infection-positive (i.e., sepsis) or infection-negative origin. It is important to distinguish between these two etiologies early and accurately because this has significant therapeutic implications for critically ill patients. We hypothesized that a molecular classifier based on peripheral blood RNAs could be discovered that would (1) determine which patients with systemic inflammation had sepsis, (2) be robust across independent patient cohorts, (3) be insensitive to disease severity, and (4) provide diagnostic utility. The goal of this study was to identify and validate such a molecular classifier. METHODS AND FINDINGS: We conducted an observational, non-interventional study of adult patients recruited from tertiary intensive care units (ICUs). Biomarker discovery utilized an Australian cohort (n = 105) consisting of 74 cases (sepsis patients) and 31 controls (post-surgical patients with infection-negative systemic inflammation) recruited at five tertiary care settings in Brisbane, Australia, from June 3, 2008, to December 22, 2011. A four-gene classifier combining CEACAM4, LAMP1, PLA2G7, and PLAC8 RNA biomarkers was identified. This classifier, designated SeptiCyte Lab, was validated using reverse transcription quantitative PCR and receiver operating characteristic (ROC) curve analysis in five cohorts (n = 345) from the Netherlands. Patients for validation were selected from the Molecular Diagnosis and Risk Stratification of Sepsis study (ClinicalTrials.gov, NCT01905033), which recruited ICU patients from the Academic Medical Center in Amsterdam and the University Medical Center Utrecht. Patients recruited from November 30, 2012, to August 5, 2013, were eligible for inclusion in the present study. Validation cohort 1 (n = 59) consisted entirely of unambiguous cases and controls; SeptiCyte Lab gave an area under curve (AUC) of 0.95 (95% CI 0.91-1.00) in this cohort. ROC curve analysis of an independent, more heterogeneous group of patients (validation cohorts 2-5; 249 patients after excluding 37 patients with an infection likelihood of "possible") gave an AUC of 0.89 (95% CI 0.85-0.93). Disease severity, as measured by Sequential Organ Failure Assessment (SOFA) score or Acute Physiology and Chronic Health Evaluation (APACHE) IV score, was not a significant confounding variable. The diagnostic utility of SeptiCyte Lab was evaluated by comparison to various clinical and laboratory parameters available to a clinician within 24 h of ICU admission. SeptiCyte Lab was significantly better at differentiating cases from controls than all tested parameters, both singly and in various logistic combinations, and more than halved the diagnostic error rate compared to procalcitonin in all tested cohorts and cohort combinations. Limitations of this study relate to (1) cohort compositions that do not perfectly reflect the composition of the intended use population, (2) potential biases that could be introduced as a result of the current lack of a gold standard for diagnosing sepsis, and (3) lack of a complete, unbiased comparison to C-reactive protein. CONCLUSIONS: SeptiCyte Lab is a rapid molecular assay that may be clinically useful in managing ICU patients with systemic inflammation. Further study in population-based cohorts is needed to validate this assay for clinical use.


Subject(s)
Critical Illness , Diagnostic Techniques and Procedures/instrumentation , Inflammation/diagnosis , Sepsis/diagnosis , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Case-Control Studies , Cohort Studies , Diagnostic Techniques and Procedures/standards , Female , Humans , Inflammation/etiology , Intensive Care Units , Male , Middle Aged , Netherlands , Queensland , ROC Curve , Reverse Transcriptase Polymerase Chain Reaction , Sepsis/etiology , Young Adult
9.
Crit Care ; 15(3): R149, 2011 Jun 20.
Article in English | MEDLINE | ID: mdl-21682927

ABSTRACT

INTRODUCTION: Sepsis is a complex immunological response to infection characterized by early hyper-inflammation followed by severe and protracted immunosuppression, suggesting that a multi-marker approach has the greatest clinical utility for early detection, within a clinical environment focused on Systemic Inflammatory Response Syndrome (SIRS) differentiation. Pre-clinical research using an equine sepsis model identified a panel of gene expression biomarkers that define the early aberrant immune activation. Thus, the primary objective was to apply these gene expression biomarkers to distinguish patients with sepsis from those who had undergone major open surgery and had clinical outcomes consistent with systemic inflammation due to physical trauma and wound healing. METHODS: This was a multi-centre, prospective clinical trial conducted across four tertiary critical care settings in Australia. Sepsis patients were recruited if they met the 1992 Consensus Statement criteria and had clinical evidence of systemic infection based on microbiology diagnoses (n = 27). Participants in the post-surgical (PS) group were recruited pre-operatively and blood samples collected within 24 hours following surgery (n = 38). Healthy controls (HC) included hospital staff with no known concurrent illnesses (n = 20). Each participant had minimally 5 ml of PAXgene blood collected for leucocyte RNA isolation and gene expression analyses. Affymetrix array and multiplex tandem (MT)-PCR studies were conducted to evaluate transcriptional profiles in circulating white blood cells applying a set of 42 molecular markers that had been identified a priori. A LogitBoost algorithm was used to create a machine learning diagnostic rule to predict sepsis outcomes. RESULTS: Based on preliminary microarray analyses comparing HC and sepsis groups, a panel of 42-gene expression markers were identified that represented key innate and adaptive immune function, cell cycling, WBC differentiation, extracellular remodelling and immune modulation pathways. Comparisons against GEO data confirmed the definitive separation of the sepsis cohort. Quantitative PCR results suggest the capacity for this test to differentiate severe systemic inflammation from HC is 92%. The area under the curve (AUC) receiver operator characteristics (ROC) curve findings demonstrated sepsis prediction within a mixed inflammatory population, was between 86 and 92%. CONCLUSIONS: This novel molecular biomarker test has a clinically relevant sensitivity and specificity profile, and has the capacity for early detection of sepsis via the monitoring of critical care patients.


Subject(s)
Diagnostic Tests, Routine/standards , Inflammation Mediators/metabolism , Sepsis/diagnosis , Sepsis/genetics , Adult , Aged , Aged, 80 and over , Animals , Biomarkers/metabolism , Cohort Studies , Diagnostic Tests, Routine/trends , Early Diagnosis , Female , Gene Expression Profiling , Horses , Humans , Male , Middle Aged , Prospective Studies , Protein Array Analysis/standards , Protein Array Analysis/trends , Sepsis/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...