Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Neuroscience ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878815

ABSTRACT

Entorhinal cortex (EC) LIII and LII glutamatergic neurons make monosynaptic connections onto distal apical dendrites of CA1 and CA2 pyramidal neurons (PNs) in the hippocampus, respectively, through perforant path (PP) projections. We previously reported that a brief train of PP stimuli evokes strong supralinear temporal summation of excitatory postsynaptic response (EPSP) in CA1 PNs that requires NMDAR activation, with relatively little summation in CA2 PNs in mice of either sex. Here we provide evidence from combined immunogold electron microscopy, cell-type specific genetic deletion and pharmacology that the NMDARs required for supralinear temporal summation of the CA1 PP EPSP are presynaptic, located in the PP terminals. Moreover, we found that the number of NMDARs in PP terminals innervating CA1 PNs is significantly greater than that found in PP terminals innervating CA2 PNs, providing a potential explanation for the difference in temporal summation in these two classes of hippocampal PNs.

2.
Physiol Rev ; 103(4): 2759-2766, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37342077

ABSTRACT

Anosmia, the loss of the sense of smell, is one of the main neurological manifestations of COVID-19. Although the SARS-CoV-2 virus targets the nasal olfactory epithelium, current evidence suggests that neuronal infection is extremely rare in both the olfactory periphery and the brain, prompting the need for mechanistic models that can explain the widespread anosmia in COVID-19 patients. Starting from work identifying the non-neuronal cell types that are infected by SARS-CoV-2 in the olfactory system, we review the effects of infection of these supportive cells in the olfactory epithelium and in the brain and posit the downstream mechanisms through which sense of smell is impaired in COVID-19 patients. We propose that indirect mechanisms contribute to altered olfactory system function in COVID-19-associated anosmia, as opposed to neuronal infection or neuroinvasion into the brain. Such indirect mechanisms include tissue damage, inflammatory responses through immune cell infiltration or systemic circulation of cytokines, and downregulation of odorant receptor genes in olfactory sensory neurons in response to local and systemic signals. We also highlight key unresolved questions raised by recent findings.


Subject(s)
Anosmia , COVID-19 , Anosmia/virology , Humans , COVID-19/complications , Olfactory Receptor Neurons/physiology , Animals , SARS-CoV-2
4.
Sci Transl Med ; 14(676): eadd0484, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542694

ABSTRACT

SARS-CoV-2 causes profound changes in the sense of smell, including total smell loss. Although these alterations are often transient, many patients with COVID-19 exhibit olfactory dysfunction that lasts months to years. Although animal and human autopsy studies have suggested mechanisms driving acute anosmia, it remains unclear how SARS-CoV-2 causes persistent smell loss in a subset of patients. To address this question, we analyzed olfactory epithelial samples collected from 24 biopsies, including from nine patients with objectively quantified long-term smell loss after COVID-19. This biopsy-based approach revealed a diffuse infiltrate of T cells expressing interferon-γ and a shift in myeloid cell population composition, including enrichment of CD207+ dendritic cells and depletion of anti-inflammatory M2 macrophages. Despite the absence of detectable SARS-CoV-2 RNA or protein, gene expression in the barrier supporting cells of the olfactory epithelium, termed sustentacular cells, appeared to reflect a response to ongoing inflammatory signaling, which was accompanied by a reduction in the number of olfactory sensory neurons relative to olfactory epithelial sustentacular cells. These findings indicate that T cell-mediated inflammation persists in the olfactory epithelium long after SARS-CoV-2 has been eliminated from the tissue, suggesting a mechanism for long-term post-COVID-19 smell loss.


Subject(s)
COVID-19 , Olfaction Disorders , Animals , Humans , COVID-19/complications , Anosmia , SARS-CoV-2 , RNA, Viral/metabolism , Olfaction Disorders/epidemiology , Olfaction Disorders/etiology , Olfactory Mucosa , Gene Expression
6.
bioRxiv ; 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35478953

ABSTRACT

Most human subjects infected by SARS-CoV-2 report an acute alteration in their sense of smell, and more than 25% of COVID patients report lasting olfactory dysfunction. While animal studies and human autopsy tissues have suggested mechanisms underlying acute loss of smell, the pathophysiology that underlies persistent smell loss remains unclear. Here we combine objective measurements of smell loss in patients suffering from post-acute sequelae of SARS-CoV-2 infection (PASC) with single cell sequencing and histology of the olfactory epithelium (OE). This approach reveals that the OE of patients with persistent smell loss harbors a diffuse infiltrate of T cells expressing interferon-gamma; gene expression in sustentacular cells appears to reflect a response to inflammatory signaling, which is accompanied by a reduction in the number of olfactory sensory neurons relative to support cells. These data identify a persistent epithelial inflammatory process associated with PASC, and suggests mechanisms through which this T cell-mediated inflammation alters the sense of smell.

7.
Cell ; 184(26): 6326-6343.e32, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34879231

ABSTRACT

Animals traversing different environments encounter both stable background stimuli and novel cues, which are thought to be detected by primary sensory neurons and then distinguished by downstream brain circuits. Here, we show that each of the ∼1,000 olfactory sensory neuron (OSN) subtypes in the mouse harbors a distinct transcriptome whose content is precisely determined by interactions between its odorant receptor and the environment. This transcriptional variation is systematically organized to support sensory adaptation: expression levels of more than 70 genes relevant to transforming odors into spikes continuously vary across OSN subtypes, dynamically adjust to new environments over hours, and accurately predict acute OSN-specific odor responses. The sensory periphery therefore separates salient signals from predictable background via a transcriptional rheostat whose moment-to-moment state reflects the past and constrains the future; these findings suggest a general model in which structured transcriptional variation within a cell type reflects individual experience.


Subject(s)
Olfactory Receptor Neurons/metabolism , Sensation/genetics , Transcription, Genetic , Animals , Brain/metabolism , Gene Expression Regulation , Mice, Inbred C57BL , Mice, Knockout , Odorants , Olfactory Bulb/metabolism , Receptors, Odorant/metabolism , Transcriptome/genetics
8.
J Neurosci ; 41(39): 8103-8110, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34385360

ABSTRACT

Entorhinal cortex neurons make monosynaptic connections onto distal apical dendrites of CA1 and CA2 pyramidal neurons through the perforant path (PP) projection. Previous studies show that differences in dendritic properties and synaptic input density enable the PP inputs to produce a much stronger excitation of CA2 compared with CA1 pyramidal neurons. Here, using mice of both sexes, we report that the difference in PP efficacy varies substantially as a function of presynaptic firing rate. Although a single PP stimulus evokes a 5- to 6-fold greater EPSP in CA2 compared with CA1, a brief high-frequency train of PP stimuli evokes a strongly facilitating postsynaptic response in CA1, with relatively little change in CA2. Furthermore, we demonstrate that blockade of NMDARs significantly reduces strong temporal summation in CA1 but has little impact on that in CA2. As a result of the differences in the frequency- and NMDAR-dependent temporal summation, naturalistic patterns of presynaptic activity evoke CA1 and CA2 responses with distinct dynamics, differentially tuning CA1 and CA2 responses to bursts of presynaptic firing versus single presynaptic spikes, respectively.SIGNIFICANCE STATEMENT Recent studies have demonstrated that abundant entorhinal cortical innervation and efficient dendritic propagation enable hippocampal CA2 pyramidal neurons to produce robust excitation evoked by single cortical stimuli, compared with CA1. Here we uncovered, unexpectedly, that the difference in efficacy of cortical excitation varies substantially as a function of presynaptic firing rate. A burst of stimuli evokes a strongly facilitating response in CA1, but not in CA2. As a result, the postsynaptic response of CA1 and CA2 to presynaptic naturalistic firing displays contrasting temporal dynamics, which depends on the activation of NMDARs. Thus, whereas CA2 responds to single stimuli, CA1 is selectively recruited by bursts of cortical input.


Subject(s)
CA1 Region, Hippocampal/physiology , CA2 Region, Hippocampal/physiology , Cerebral Cortex/physiology , Excitatory Postsynaptic Potentials/physiology , Pyramidal Cells/physiology , Synapses/physiology , Animals , CA1 Region, Hippocampal/drug effects , CA2 Region, Hippocampal/drug effects , Cerebral Cortex/drug effects , Excitatory Postsynaptic Potentials/drug effects , Female , GABA-A Receptor Antagonists/pharmacology , GABA-B Receptor Antagonists/pharmacology , Male , Mice , Neural Pathways/drug effects , Neural Pathways/physiology , Patch-Clamp Techniques , Pyramidal Cells/drug effects , Synapses/drug effects
9.
Sci Adv ; 6(31)2020 07 31.
Article in English | MEDLINE | ID: mdl-32937591

ABSTRACT

Altered olfactory function is a common symptom of COVID-19, but its etiology is unknown. A key question is whether SARS-CoV-2 (CoV-2) - the causal agent in COVID-19 - affects olfaction directly, by infecting olfactory sensory neurons or their targets in the olfactory bulb, or indirectly, through perturbation of supporting cells. Here we identify cell types in the olfactory epithelium and olfactory bulb that express SARS-CoV-2 cell entry molecules. Bulk sequencing demonstrated that mouse, non-human primate and human olfactory mucosa expresses two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, single cell sequencing revealed that ACE2 is expressed in support cells, stem cells, and perivascular cells, rather than in neurons. Immunostaining confirmed these results and revealed pervasive expression of ACE2 protein in dorsally-located olfactory epithelial sustentacular cells and olfactory bulb pericytes in the mouse. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients.


Subject(s)
Coronavirus Infections/pathology , Olfaction Disorders/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Serine Endopeptidases/metabolism , Smell/physiology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/physiology , COVID-19 , Callithrix , Humans , Macaca , Mice , Olfaction Disorders/genetics , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Pandemics , Peptidyl-Dipeptidase A/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Smell/genetics , Virus Internalization
10.
Neuron ; 107(2): 219-233, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32640192

ABSTRACT

The main neurological manifestation of COVID-19 is loss of smell or taste. The high incidence of smell loss without significant rhinorrhea or nasal congestion suggests that SARS-CoV-2 targets the chemical senses through mechanisms distinct from those used by endemic coronaviruses or other common cold-causing agents. Here we review recently developed hypotheses about how SARS-CoV-2 might alter the cells and circuits involved in chemosensory processing and thereby change perception. Given our limited understanding of SARS-CoV-2 pathogenesis, we propose future experiments to elucidate disease mechanisms and highlight the relevance of this ongoing work to understanding how the virus might alter brain function more broadly.


Subject(s)
Betacoronavirus , Coronavirus Infections/physiopathology , Olfaction Disorders/physiopathology , Pneumonia, Viral/physiopathology , Smell/physiology , Taste Disorders/physiopathology , Taste/physiology , Animals , COVID-19 , Coronavirus Infections/epidemiology , Humans , Olfaction Disorders/epidemiology , Olfaction Disorders/virology , Olfactory Bulb/physiopathology , Olfactory Bulb/virology , Olfactory Mucosa/physiopathology , Olfactory Mucosa/virology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Taste Disorders/epidemiology , Taste Disorders/virology
11.
Annu Rev Neurosci ; 43: 277-295, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32640927

ABSTRACT

Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.


Subject(s)
Brain/physiology , Nerve Net/physiology , Olfactory Pathways/physiology , Olfactory Perception/physiology , Smell/physiology , Animals , Humans , Odorants
12.
J Neurophysiol ; 123(3): 980-992, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31967926

ABSTRACT

The population activity of CA1 pyramidal neurons (PNs) segregates along anatomical axes with different behaviors, suggesting that CA1 PNs are functionally subspecialized based on somatic location. In dorsal CA1, spatial encoding is biased toward CA2 (CA1c) and in deep layers of the radial axis. In contrast, nonspatial coding peaks toward subiculum (CA1a) and in superficial layers. While preferential innervation by spatial vs. nonspatial input from entorhinal cortex (EC) may contribute to this specialization, it cannot fully explain the range of in vivo responses. Differences in intrinsic properties thus may play a critical role in modulating such synaptic input differences. In this study we examined the postsynaptic integrative properties of dorsal CA1 PNs in six subpopulations along the transverse (CA1c, CA1b, CA1a) and radial (deep, superficial) axes. Our results suggest that active and passive properties of deep and superficial neurons evolve over the transverse axis to promote the functional specialization of CA1c vs. CA1a as dictated by their cortical input. We also find that CA1b is not merely an intermediate mix of its neighbors, but uniquely balances low excitability with superior input integration of its mixed input, as may be required for its proposed role in sequence encoding. Thus synaptic input and intrinsic properties combine to functionally compartmentalize CA1 processing into at least three transverse axis regions defined by the processing schemes of their composite radial axis subpopulations.NEW & NOTEWORTHY There is increasing interest in CA1 pyramidal neuron heterogeneity and the functional relevance of this diversity. We find that active and passive properties evolve over the transverse and radial axes in dorsal CA1 to promote the functional specialization of CA1c and CA1a for spatial and nonspatial memory, respectively. Furthermore, CA1b is not a mean of its neighbors, but features low excitability and superior integrative capabilities, relevant to its role in nonspatial sequence encoding.


Subject(s)
CA1 Region, Hippocampal/physiology , Memory/physiology , Pyramidal Cells/physiology , Animals , Electrophysiological Phenomena/physiology , Mice , Mice, Inbred C57BL , Spatial Memory/physiology
13.
Neuron ; 105(2): 246-259.e8, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31786013

ABSTRACT

Though the temporal precision of neural computation has been studied intensively, a data-driven determination of this precision remains a fundamental challenge. Reproducible spike patterns may be obscured on single trials by uncontrolled temporal variability in behavior and cognition and may not be time locked to measurable signatures in behavior or local field potentials (LFP). To overcome these challenges, we describe a general-purpose time warping framework that reveals precise spike-time patterns in an unsupervised manner, even when these patterns are decoupled from behavior or are temporally stretched across single trials. We demonstrate this method across diverse systems: cued reaching in nonhuman primates, motor sequence production in rats, and olfaction in mice. This approach flexibly uncovers diverse dynamical firing patterns, including pulsatile responses to behavioral events, LFP-aligned oscillatory spiking, and even unanticipated patterns, such as 7 Hz oscillations in rat motor cortex that are not time locked to measured behaviors or LFP.


Subject(s)
Action Potentials/physiology , Neurons/physiology , Pattern Recognition, Automated/methods , Amyloid beta-Protein Precursor/genetics , Animals , Gene Knock-In Techniques , Macaca mulatta , Male , Mice , Mice, Transgenic , Microinjections , Motor Cortex/physiology , Peptide Fragments/genetics , Primary Cell Culture , Proteins/genetics , Rats , Time Factors
15.
Nature ; 564(7735): 213-218, 2018 12.
Article in English | MEDLINE | ID: mdl-30518859

ABSTRACT

Although the hippocampus is known to be important for declarative memory, it is less clear how hippocampal output regulates motivated behaviours, such as social aggression. Here we report that pyramidal neurons in the CA2 region of the hippocampus, which are important for social memory, promote social aggression in mice. This action depends on output from CA2 to the lateral septum, which is selectively enhanced immediately before an attack. Activation of the lateral septum by CA2 recruits a circuit that disinhibits a subnucleus of the ventromedial hypothalamus that is known to trigger attack. The social hormone arginine vasopressin enhances social aggression by acting on arginine vasopressin 1b receptors on CA2 presynaptic terminals in the lateral septum to facilitate excitatory synaptic transmission. In this manner, release of arginine vasopressin in the lateral septum, driven by an animal's internal state, may serve as a modulatory control that determines whether CA2 activity leads to declarative memory of a social encounter and/or promotes motivated social aggression.


Subject(s)
Aggression/physiology , CA2 Region, Hippocampal/cytology , CA2 Region, Hippocampal/physiology , Neural Inhibition , Neural Pathways/physiology , Septal Nuclei/cytology , Septal Nuclei/physiology , Social Behavior , Animals , Arginine Vasopressin/metabolism , Clozapine/analogs & derivatives , Clozapine/pharmacology , Excitatory Postsynaptic Potentials , Female , Male , Memory/physiology , Mice , Mice, Inbred BALB C , Motivation , Presynaptic Terminals/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Pyramidal Cells/metabolism , Receptors, Vasopressin/metabolism , Synaptic Transmission , Ventromedial Hypothalamic Nucleus/cytology , Ventromedial Hypothalamic Nucleus/physiology
16.
eNeuro ; 4(4)2017.
Article in English | MEDLINE | ID: mdl-28856240

ABSTRACT

The CA1 region of the hippocampus plays a critical role in spatial and contextual memory, and has well-established circuitry, function and plasticity. In contrast, the properties of the flanking CA2 pyramidal neurons (PNs), important for social memory, and lacking CA1-like plasticity, remain relatively understudied. In particular, little is known regarding the expression of voltage-gated K+ (Kv) channels and the contribution of these channels to the distinct properties of intrinsic excitability, action potential (AP) waveform, firing patterns and neurotransmission between CA1 and CA2 PNs. In the present study, we used multiplex fluorescence immunolabeling of mouse brain sections, and whole-cell recordings in acute mouse brain slices, to define the role of heterogeneous expression of Kv2 family Kv channels in CA1 versus CA2 pyramidal cell excitability. Our results show that the somatodendritic delayed rectifier Kv channel subunits Kv2.1, Kv2.2, and their auxiliary subunit AMIGO-1 have region-specific differences in expression in PNs, with the highest expression levels in CA1, a sharp decrease at the CA1-CA2 boundary, and significantly reduced levels in CA2 neurons. PNs in CA1 exhibit a robust contribution of Guangxitoxin-1E-sensitive Kv2-based delayed rectifier current to AP shape and after-hyperpolarization potential (AHP) relative to that seen in CA2 PNs. Our results indicate that robust Kv2 channel expression confers a distinct pattern of intrinsic excitability to CA1 PNs, potentially contributing to their different roles in hippocampal network function.


Subject(s)
Action Potentials/physiology , CA1 Region, Hippocampal/metabolism , CA2 Region, Hippocampal/metabolism , Pyramidal Cells/metabolism , Shab Potassium Channels/metabolism , Action Potentials/drug effects , Animals , Arthropod Proteins/pharmacology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/drug effects , CA2 Region, Hippocampal/cytology , CA2 Region, Hippocampal/drug effects , Female , Gene Expression , Immunohistochemistry , Male , Mice, Inbred C57BL , Mice, Transgenic , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Pyramidal Cells/cytology , Pyramidal Cells/drug effects , Shab Potassium Channels/antagonists & inhibitors , Spider Venoms/pharmacology , Tissue Culture Techniques
17.
Neuron ; 95(5): 1089-1102.e5, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28823730

ABSTRACT

Input-timing-dependent plasticity (ITDP) is a circuit-based synaptic learning rule by which paired activation of entorhinal cortical (EC) and Schaffer collateral (SC) inputs to hippocampal CA1 pyramidal neurons (PNs) produces a long-term enhancement of SC excitation. We now find that paired stimulation of EC and SC inputs also induces ITDP of SC excitation of CA2 PNs. However, whereas CA1 ITDP results from long-term depression of feedforward inhibition (iLTD) as a result of activation of CB1 endocannabinoid receptors on cholecystokinin-expressing interneurons, CA2 ITDP results from iLTD through activation of δ-opioid receptors on parvalbumin-expressing interneurons. Furthermore, whereas CA1 ITDP has been previously linked to enhanced specificity of contextual memory, we find that CA2 ITDP is associated with enhanced social memory. Thus, ITDP may provide a general synaptic learning rule for distinct forms of hippocampal-dependent memory mediated by distinct hippocampal regions.


Subject(s)
CA2 Region, Hippocampal/physiology , Memory/physiology , Neuronal Plasticity/physiology , Animals , CA2 Region, Hippocampal/cytology , Entorhinal Cortex/physiology , Interneurons/metabolism , Long-Term Synaptic Depression/physiology , Male , Mice , Mice, Transgenic , Neural Inhibition/physiology , Parvalbumins/metabolism , Pyramidal Cells/physiology , Receptors, Opioid, delta/metabolism , Social Behavior , Time Factors
18.
Cell Rep ; 18(1): 148-160, 2017 01 03.
Article in English | MEDLINE | ID: mdl-28052245

ABSTRACT

Although hippocampal CA1 pyramidal neurons (PNs) were thought to comprise a uniform population, recent evidence supports two distinct sublayers along the radial axis, with deep neurons more likely to form place cells than superficial neurons. CA1 PNs also differ along the transverse axis with regard to direct inputs from entorhinal cortex (EC), with medial EC (MEC) providing spatial information to PNs toward CA2 (proximal CA1) and lateral EC (LEC) providing non-spatial information to PNs toward subiculum (distal CA1). We demonstrate that the two inputs differentially activate the radial sublayers and that this difference reverses along the transverse axis, with MEC preferentially targeting deep PNs in proximal CA1 and LEC preferentially exciting superficial PNs in distal CA1. This differential excitation reflects differences in dendritic spine numbers. Our results reveal a heterogeneity in EC-CA1 connectivity that may help explain differential roles of CA1 PNs in spatial and non-spatial learning and memory.


Subject(s)
CA1 Region, Hippocampal/physiology , Entorhinal Cortex/physiology , Pyramidal Cells/physiology , Animals , Dendritic Spines/physiology , Male , Mice, Inbred C57BL , Neural Inhibition/physiology , Optogenetics , Perforant Pathway/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...