Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
J Exp Psychol Gen ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815102

ABSTRACT

Topology is the branch of mathematics that seeks to understand and describe spatial relations. A number of studies have examined the human perception of topology-in particular, whether adults and young children perceive and differentiate objects based on features like closure, boundedness, and emptiness. Topology is about more than "wholes and holes," however; it also offers an efficient language for representing network structure. Topological maps, common for subway systems across the world, are an example of how effective this language can be. Inspired by this idea, here we examine "intuitive network topology." We first show that people readily differentiate objects based on several different features of topological networks. We then show that people both remember and match objects in accordance with their topology, over and above substantial variation in their surface features. These results demonstrate that humans possess an intuitive understanding for the basic topological features of networks, and hint at the possibility that topology may serve as a format for representing relations in the mind. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
Cognition ; 249: 105813, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38820687

ABSTRACT

It is often assumed that adaptation - a temporary change in sensitivity to a perceptual dimension following exposure to that dimension - is a litmus test for what is and is not a "primary visual attribute". Thus, papers purporting to find evidence of number adaptation motivate a claim of great significance: That number is something that can be seen in much the way that canonical visual features, like color, contrast, size, and speed, can. Fifteen years after its reported discovery, number adaptation's existence seems to be nearly undisputed, with dozens of papers documenting support for the phenomenon. The aim of this paper is to offer a counterweight - to critically assess the evidence for and against number adaptation. After surveying the many reasons for thinking that number adaptation exists, we introduce several lesser-known reasons to be skeptical. We then advance an alternative account - the old news hypothesis - which can accommodate previously published findings while explaining various (otherwise unexplained) anomalies in the existing literature. Next, we describe the results of eight pre-registered experiments which pit our novel old news hypothesis against the received number adaptation hypothesis. Collectively, the results of these experiments undermine the number adaptation hypothesis on several fronts, whilst consistently supporting the old news hypothesis. More broadly our work raises questions about the status of adaptation itself as a means of discerning what is and is not a visual attribute.

3.
Proc Biol Sci ; 291(2017): 20222584, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378153

ABSTRACT

All mobile organisms forage for resources, choosing how and when to search for new opportunities by comparing current returns with the average for the environment. In humans, nomadic lifestyles favouring exploration have been associated with genetic mutations implicated in attention deficit hyperactivity disorder (ADHD), inviting the hypothesis that this condition may impact foraging decisions in the general population. Here we tested this pre-registered hypothesis by examining how human participants collected resources in an online foraging task. On every trial, participants chose either to continue to collect rewards from a depleting patch of resources or to replenish the patch. Participants also completed a well-validated ADHD self-report screening assessment at the end of sessions. Participants departed resource patches sooner when travel times between patches were shorter than when they were longer, as predicted by optimal foraging theory. Participants whose scores on the ADHD scale crossed the threshold for a positive screen departed patches significantly sooner than participants who did not meet this criterion. Participants meeting this threshold for ADHD also achieved higher reward rates than individuals who did not. Our findings suggest that ADHD attributes may confer foraging advantages in some environments and invite the possibility that this condition may reflect an adaptation favouring exploration over exploitation.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Attention Deficit Disorder with Hyperactivity/diagnosis , Reward , Life Style , Self Report
4.
iScience ; 27(2): 108866, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318369

ABSTRACT

Humans typically represent numbers and quantities along a left-to-right continuum. Early perspectives attributed number-space association to culture; however, recent evidence in newborns and animals challenges this hypothesis. We investigate whether the length of an array of dots influences spatial bias in rhesus macaques. We designed a touch-screen task that required monkeys to remember the location of a target. At test, monkeys maintained high performance with arrays of 2, 4, 6, or 10 dots, regardless of changes in the array's location, spacing, and length. Monkeys remembered better left targets with 2-dot arrays and right targets with 6- or 10-dot arrays. Replacing the 10-dot array with a long bar, yielded more accurate performance with rightward locations, consistent with an underlying left-to-right oriented magnitude code. Our study supports the hypothesis of a spatially oriented mental magnitude line common to humans and animals, countering the idea that this code arises from uniquely human cultural learning.

5.
Trends Neurosci Educ ; 30: 100197, 2023 03.
Article in English | MEDLINE | ID: mdl-36925266

ABSTRACT

BACKGROUND: A hallmark of the approximate number system (ANS) is ratio dependence. Previous work identified specific event-related potentials (ERPs) that are modulated by numerical ratio throughout the lifespan. In adults, ERP ratio dependence was correlated with the precision of the numerical judgments with individuals who make more precise judgments showing larger ratio-dependent ERP effects. The current study evaluated if this relationship generalizes to preschoolers. METHOD: ERPs were recorded from 56 4.5 to 5.5-year-olds while they compared the numerosity of two sequentially presented dot arrays. Nonverbal numerical precision, often called ANS acuity, was assessed using a similar behavioral task. RESULTS: Only children with high ANS acuity exhibited a P2p ratio-dependent effect onsetting ∼250 ms after the presentation of the comparison dot array. Furthermore, P2p amplitude positively correlated with ANS acuity across tasks. CONCLUSION: Results demonstrate developmental continuity between preschool years and adulthood in the neural basis of the ANS.


Subject(s)
Judgment , Schools , Adult , Child , Humans , Child, Preschool , Mathematics , Judgment/physiology , Language , Neurophysiology
6.
Front Hum Neurosci ; 16: 752190, 2022.
Article in English | MEDLINE | ID: mdl-35280204

ABSTRACT

Children bring intuitive arithmetic knowledge to the classroom before formal instruction in mathematics begins. For example, children can use their number sense to add, subtract, compare ratios, and even perform scaling operations that increase or decrease a set of dots by a factor of 2 or 4. However, it is currently unknown whether children can engage in a true division operation before formal mathematical instruction. Here we examined the ability of 6- to 9-year-old children and college students to perform symbolic and non-symbolic approximate division. Subjects were presented with non-symbolic (dot array) or symbolic (Arabic numeral) dividends ranging from 32 to 185, and non-symbolic divisors ranging from 2 to 8. Subjects compared their imagined quotient to a visible target quantity. Both children (Experiment 1 N = 89, Experiment 2 N = 42) and adults (Experiment 3 N = 87) were successful at the approximate division tasks in both dots and numeral formats. This was true even among the subset of children that could not recognize the division symbol or solve simple division equations, suggesting intuitive division ability precedes formal division instruction. For both children and adults, the ability to divide non-symbolically mediated the relation between Approximate Number System (ANS) acuity and symbolic math performance, suggesting that the ability to calculate non-symbolically may be a mechanism of the relation between ANS acuity and symbolic math. Our findings highlight the intuitive arithmetic abilities children possess before formal math instruction.

7.
Cognition ; 225: 105096, 2022 08.
Article in English | MEDLINE | ID: mdl-35316670

ABSTRACT

Numerical illusions may provide a powerful window into the mechanisms that give rise to our visual number sense. Recent research has shown that similarly oriented elements appear more numerous than randomly oriented elements in an array. Here we examine whether the orientation coherence illusion is a more general byproduct of the effect of entropy on numerical information-processing. Participants engaged in an ordinal numerical comparison task where the color entropy of arrays was manipulated. We found that arrays with low color entropy were perceived as more numerous than arrays with high color entropy (Experiments 1 and 2), suggesting that the coherence illusion on numerosity perception is not specific to a particular visual property (e.g., orientation) but instead that the entropy of visual arrays more generally affects numerical processing. In Experiment 3, we explored the developmental trajectory of the color entropy effect in children aged 5 to 17 and found that the strength of the coherence illusion increases into adulthood, raising intriguing questions as to how perceptual experiences influence the progression of this numerosity illusion. We consider a recently proposed resource-rational model as a framework for understanding the entropy effect on numerosity perception under an information-theoretic perspective.


Subject(s)
Illusions , Adult , Child , Entropy , Humans , Longevity , Visual Perception
8.
Biol Lett ; 18(2): 20210426, 2022 02.
Article in English | MEDLINE | ID: mdl-35135313

ABSTRACT

Animals show vast numerical competence in tasks that require both ordinal and cardinal numerical representations, but few studies have addressed whether animals can identify the numerical middle in a sequence. Two rhesus monkeys (Macaca mulatta) learned to select the middle dot in a horizontal sequence of three dots on a touchscreen. When subsequently presented with longer sequences composed of 5, 7 or 9 items, monkeys transferred the middle rule. Accuracy decreased as the length of the sequence increased. In a second test, we presented monkeys with asymmetrical sequences composed of nine items, where the numerical and spatial middle were distinct and both monkeys selected the numerical middle over the spatial middle. Our results demonstrate that rhesus macaques can extract an abstract numerical rule to bisect a discrete set of items.


Subject(s)
Learning , Animals , Macaca mulatta
9.
J Cogn Neurosci ; 33(12): 2536-2547, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34407187

ABSTRACT

Whether and how the brain encodes discrete numerical magnitude differently from continuous nonnumerical magnitude is hotly debated. In a previous set of studies, we orthogonally varied numerical (numerosity) and nonnumerical (size and spacing) dimensions of dot arrays and demonstrated a strong modulation of early visual evoked potentials (VEPs) by numerosity and not by nonnumerical dimensions. Although very little is known about the brain's response to systematic changes in continuous dimensions of a dot array, some authors intuit that the visual processing stream must be more sensitive to continuous magnitude information than to numerosity. To address this possibility, we measured VEPs of participants viewing dot arrays that changed exclusively in one nonnumerical magnitude dimension at a time (size or spacing) while holding numerosity constant and compared this to a condition where numerosity was changed while holding size and spacing constant. We found reliable but small neural sensitivity to exclusive changes in size and spacing; however, exclusively changing numerosity elicited a much more robust modulation of the VEPs. Together with previous work, these findings suggest that sensitivity to magnitude dimensions in early visual cortex is context dependent: The brain is moderately sensitive to changes in size and spacing when numerosity is held constant, but sensitivity to these continuous variables diminishes to a negligible level when numerosity is allowed to vary at the same time. Neurophysiological explanations for the encoding and context dependency of numerical and nonnumerical magnitudes are proposed within the framework of neuronal normalization.


Subject(s)
Evoked Potentials, Visual , Mathematical Concepts , Brain , Cognition , Humans , Visual Perception
10.
J Exp Child Psychol ; 207: 105116, 2021 07.
Article in English | MEDLINE | ID: mdl-33677334

ABSTRACT

Prior work indicates that children have an untrained ability to approximately calculate using their approximate number system (ANS). For example, children can mentally double or halve a large array of discrete objects. Here, we asked whether children can perform a true multiplication operation, flexibly attending to both the multiplier and multiplicand, prior to formal multiplication instruction. We presented 5- to 8-year-olds with nonsymbolic multiplicands (dot arrays) or symbolic multiplicands (Arabic numerals) ranging from 2 to 12 and with nonsymbolic multipliers ranging from 2 to 8. Children compared each imagined product with a visible comparison quantity. Children performed with above-chance accuracy on both nonsymbolic and symbolic approximate multiplication, and their performance was dependent on the ratio between the imagined product and the comparison target. Children who could not solve any single-digit symbolic multiplication equations (e.g., 2 × 3) on a basic math test were nevertheless successful on both our approximate multiplication tasks, indicating that children have an intuitive sense of multiplication that emerges independent of formal instruction about symbolic multiplication. Nonsymbolic multiplication performance mediated the relation between children's Weber fraction and symbolic math abilities, suggesting a pathway by which the ANS contributes to children's emerging symbolic math competence. These findings may inform future educational interventions that allow children to use their basic arithmetic intuition as a scaffold to facilitate symbolic math learning.


Subject(s)
Achievement , Child Development , Child , Child, Preschool , Cognition , Humans , Language , Learning , Mathematics
11.
Child Dev ; 92(3): 1011-1027, 2021 05.
Article in English | MEDLINE | ID: mdl-33609044

ABSTRACT

Children struggle with exact, symbolic ratio reasoning, but prior research demonstrates children show surprising intuition when making approximate, nonsymbolic ratio judgments. In the current experiment, eighty-five 6- to 8-year-old children made approximate ratio judgments with dot arrays and numerals. Children were adept at approximate ratio reasoning in both formats and improved with age. Children who engaged in the nonsymbolic task first performed better on the symbolic task compared to children tested in the reverse order, suggesting that nonsymbolic ratio reasoning may function as a scaffold for symbolic ratio reasoning. Nonsymbolic ratio reasoning mediated the relation between children's numerosity comparison performance and symbolic mathematics performance in the domain of probabilities, but numerosity comparison performance explained significant unique variance in general numeration skills.


Subject(s)
Judgment , Problem Solving , Child , Humans , Intuition , Mathematics , Probability
12.
Cognition ; 207: 104521, 2021 02.
Article in English | MEDLINE | ID: mdl-33280814

ABSTRACT

Previous research reported that college students' symbolic addition and subtraction fluency improved after training with non-symbolic, approximate addition and subtraction. These findings were widely interpreted as strong support for the hypothesis that the Approximate Number System (ANS) plays a causal role in symbolic mathematics, and that this relation holds into adulthood. Here we report four experiments that fail to find evidence for this causal relation. Experiment 1 examined whether the approximate arithmetic training effect exists within a shorter training period than originally reported (2 vs 6 days of training). Experiment 2 attempted to replicate and compare the approximate arithmetic training effect to a control training condition matched in working memory load. Experiments 3 and 4 replicated the original approximate arithmetic training experiments with a larger sample size. Across all four experiments (N = 318) approximate arithmetic training was no more effective at improving the arithmetic fluency of adults than training with control tasks. Results call into question any causal relationship between approximate, non-symbolic arithmetic and precise symbolic arithmetic.


Subject(s)
Cognition , Memory, Short-Term , Adult , Humans , Mathematics
13.
Sci Rep ; 10(1): 17402, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060813

ABSTRACT

concept learning provides a fundamental building block for many cognitive functions in humans. Here we address whether rhesus monkeys (Macaca mulatta) can learn the abstract concept of "middle" in a series of objects. First, we trained monkeys to select the middle dot in a horizontal series of three dots presented on a touchscreen. Monkeys maintained a preference to choose the middle dot despite changes in the appearance, location, and spacing of the horizontal series of dots. They maintained high performance when the color, shape and the length of the stimuli were new, indicating that their responses did not depend upon the particular appearance of the array items. Next, we asked whether monkeys would generalize the middle concept to a 7 dot series. Although accuracy decreased when the number of dots was increased, monkeys continued to preferentially select the middle dot. Our results demonstrate that rhesus macaques can learn to use a middle concept for a discrete set of items.


Subject(s)
Concept Formation , Macaca mulatta/physiology , Animals , Male , Task Performance and Analysis
14.
Cognition ; 204: 104352, 2020 11.
Article in English | MEDLINE | ID: mdl-32629292

ABSTRACT

Humans are thought to use the approximate number system (ANS) to make quick approximations based on quantity even before learning to count. However, there has long been controversy regarding the salience of number versus other stimulus dimensions throughout development, including a recent proposal that number sense is derived from a sense of general magnitude. Here, we used a regression approach to disentangle numerical acuity from sensitivity to total surface area in both 5-year-old children and adults. We found that both children and adults displayed higher acuity when making numerosity judgments than total surface area judgments. Adults were largely able to ignore irrelevant stimulus features when making numerosity or total area judgments. Children were more biased by numerosity when making total area judgments than by total area when making numerosity judgments. These results provide evidence that number is more salient than total surface area even before the start of formal education and are inconsistent with the Sense of Magnitude proposal.


Subject(s)
Cognition , Judgment , Adult , Aptitude , Bias , Child, Preschool , Humans , Learning
15.
J Vis ; 20(4): 4, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32271896

ABSTRACT

Several non-numerical factors influence the numerical estimation of visual arrays, including the spacing of items and whether they are arranged randomly or symmetrically. Here we report a novel numerosity illusion we term the coherence illusion. When items in an array have a coherent orientation (all pointing in the same direction) they seem to be more numerous than when items are oriented randomly. Participants show parametric effects of orientation coherence in three distinct numerical judgment tasks. These findings are not predicted by any current model of numerical estimation. We discuss array entropy as a possible framework for explaining both the coherence illusion and the previously reported regular-random illusion.


Subject(s)
Illusions/physiology , Orientation, Spatial/physiology , Visual Perception/physiology , Female , Humans , Judgment , Male , Young Adult
16.
Cortex ; 114: 76-89, 2019 05.
Article in English | MEDLINE | ID: mdl-29983159

ABSTRACT

The ability to estimate numerosity in a visual array arose early in evolution, develops early in human development, and is correlated with mathematical ability. Previous work with visually presented arrays indicates that the intraparietal sulcus (IPS) represents number. However, it is not clear if the number signal originates in IPS or is propagated from earlier visual areas. Previous work from our group has demonstrated a rapidly instantiated representation of number in low-level regions of visual cortex using the high temporal resolution of event-related electro-encephalography (EEG). Here, we use a rapid event-related functional magnetic resonance imaging (fMRI) paradigm and find convergent evidence for a number signal in low-level visual cortex (areas V1, V2, and V3). Employing a stringent set of stimulus controls, we demonstrate that this signal cannot be explained by the total extent of the array, the density of the items in the array, the aggregate visual area of the items, the size of individual items, the proportion of the array covered by items, nor the overall scale of the array and items. Our findings thus provide strong support for the hypothesis that number is rapidly and directly encoded early in the visual processing stream.


Subject(s)
Brain/physiology , Parietal Lobe/physiology , Visual Cortex/physiology , Visual Perception/physiology , Adult , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Photic Stimulation/methods
17.
Hum Brain Mapp ; 40(4): 1328-1343, 2019 03.
Article in English | MEDLINE | ID: mdl-30548735

ABSTRACT

Symbolic arithmetic is a complex, uniquely human ability that is acquired through direct instruction. In contrast, the capacity to mentally add and subtract nonsymbolic quantities such as dot arrays emerges without instruction and can be seen in human infants and nonhuman animals. One possibility is that the mental manipulation of nonsymbolic arrays provides a critical scaffold for developing symbolic arithmetic abilities. To explore this hypothesis, we examined whether there is a shared neural basis for nonsymbolic and symbolic double-digit addition. In parallel, we asked whether there are brain regions that are associated with nonsymbolic and symbolic addition independently. First, relative to visually matched control tasks, we found that both nonsymbolic and symbolic addition elicited greater neural signal in the bilateral intraparietal sulcus (IPS), bilateral inferior temporal gyrus, and the right superior parietal lobule. Subsequent representational similarity analyses revealed that the neural similarity between nonsymbolic and symbolic addition was stronger relative to the similarity between each addition condition and its visually matched control task, but only in the bilateral IPS. These findings suggest that the IPS is involved in arithmetic calculation independent of stimulus format.


Subject(s)
Brain/physiology , Cognition/physiology , Mathematical Concepts , Neural Pathways/physiology , Adolescent , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Young Adult
18.
Front Psychol ; 9: 606, 2018.
Article in English | MEDLINE | ID: mdl-29867624

ABSTRACT

Recent studies suggest that practice with approximate and non-symbolic arithmetic problems improves the math performance of adults, school aged children, and preschoolers. However, the relative effectiveness of approximate arithmetic training compared to available educational games, and the type of math skills that approximate arithmetic targets are unknown. The present study was designed to (1) compare the effectiveness of approximate arithmetic training to two commercially available numeral and letter identification tablet applications and (2) to examine the specific type of math skills that benefit from approximate arithmetic training. Preschool children (n = 158) were pseudo-randomly assigned to one of three conditions: approximate arithmetic, letter identification, or numeral identification. All children were trained for 10 short sessions and given pre and post tests of informal and formal math, executive function, short term memory, vocabulary, alphabet knowledge, and number word knowledge. We found a significant interaction between initial math performance and training condition, such that children with low pretest math performance benefited from approximate arithmetic training, and children with high pretest math performance benefited from symbol identification training. This effect was restricted to informal, and not formal, math problems. There were also effects of gender, socio-economic status, and age on post-test informal math score after intervention. A median split on pretest math ability indicated that children in the low half of math scores in the approximate arithmetic training condition performed significantly better than children in the letter identification training condition on post-test informal math problems when controlling for pretest, age, gender, and socio-economic status. Our results support the conclusion that approximate arithmetic training may be especially effective for children with low math skills, and that approximate arithmetic training improves early informal, but not formal, math skills.

19.
Front Psychol ; 9: 2554, 2018.
Article in English | MEDLINE | ID: mdl-30618975

ABSTRACT

The approximate number system (ANS) is widely considered to be a foundation for the acquisition of uniquely human symbolic numerical capabilities. However, the mechanism by which the ANS may support symbolic number representations and mathematical thought remains poorly understood. In the present study, we investigated two pathways by which the ANS may influence early math abilities: variability in the acuity of the ANS representations, and children's' ability to manipulate ANS representations. We assessed the relation between 4-year-old children's performance on a non-symbolic numerical comparison task, a non-symbolic approximate addition task, and a standardized symbolic math assessment. Our results indicate that ANS acuity and ANS manipulability each contribute unique variance to preschooler's early math achievement, and this result holds after controlling for both IQ and executive functions. These findings suggest that there are multiple routes by which the ANS influences math achievement. Therefore, interventions that target both the precision and manipulability of the ANS may prove to be more beneficial for improving symbolic math skills compared to interventions that target only one of these factors.

20.
Dev Sci ; 21(3): e12578, 2018 05.
Article in English | MEDLINE | ID: mdl-28681391

ABSTRACT

Adult neuroimaging studies have demonstrated dissociable neural activation patterns in the visual cortex in response to letters (Latin alphabet) and numbers (Arabic numerals), which suggest a strong experiential influence of reading and mathematics on the human visual system. Here, developmental trajectories in the event-related potential (ERP) patterns evoked by visual processing of letters, numbers, and false fonts were examined in four different age groups (7-, 10-, 15-year-olds, and young adults). The 15-year-olds and adults showed greater neural sensitivity to letters over numbers in the left visual cortex and the reverse pattern in the right visual cortex, extending previous findings in adults to teenagers. In marked contrast, 7- and 10-year-olds did not show this dissociable neural pattern. Furthermore, the contrast of familiar stimuli (letters or numbers) versus unfamiliar ones (false fonts) showed stark ERP differences between the younger (7- and 10-year-olds) and the older (15-year-olds and adults) participants. These results suggest that both coarse (familiar versus unfamiliar) and fine (letters versus numbers) tuning for letters and numbers continue throughout childhood and early adolescence, demonstrating a profound impact of uniquely human cultural inventions on visual cognition and its development.


Subject(s)
Cerebral Cortex/physiology , Child Development/physiology , Pattern Recognition, Visual/physiology , Adolescent , Age Factors , Child , Cognition , Evoked Potentials/physiology , Female , Humans , Language , Male , Mathematics , Visual Cortex/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...