Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Eur Spine J ; 33(4): 1607-1616, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367026

ABSTRACT

PURPOSE: To evaluate feasibility, internal consistency, inter-rater reliability, and prospective validity of AO Spine CROST (Clinician Reported Outcome Spine Trauma) in the clinical setting. METHODS: Patients were included from four trauma centers. Two surgeons with substantial amount of experience in spine trauma care were included from each center. Two separate questionnaires were administered at baseline, 6-months and 1-year: one to surgeons (mainly CROST) and another to patients (AO Spine PROST-Patient Reported Outcome Spine Trauma). Descriptive statistics were used to analyze patient characteristics and feasibility, Cronbach's α for internal consistency. Inter-rater reliability through exact agreement, Kappa statistics and Intraclass Correlation Coefficient (ICC). Prospective analysis, and relationships between CROST and PROST were explored through descriptive statistics and Spearman correlations. RESULTS: In total, 92 patients were included. CROST showed excellent feasibility results. Internal consistency (α = 0.58-0.70) and reliability (ICC = 0.52 and 0.55) were moderate. Mean total scores between surgeons only differed 0.2-0.9 with exact agreement 48.9-57.6%. Exact agreement per CROST item showed good results (73.9-98.9%). Kappa statistics revealed moderate agreement for most CROST items. In the prospective analysis a trend was only seen when no concerns at all were expressed by the surgeon (CROST = 0), and moderate to strong positive Spearman correlations were found between CROST at baseline and the scores at follow-up (rs = 0.41-0.64). Comparing the CROST with PROST showed no specific association, nor any Spearman correlations (rs = -0.33-0.07). CONCLUSIONS: The AO Spine CROST showed moderate validity in a true clinical setting including patients from the daily clinical practice.


Subject(s)
Spinal Injuries , Humans , Reproducibility of Results , Spinal Injuries/surgery , Spine , Surveys and Questionnaires , Patient Reported Outcome Measures
2.
Global Spine J ; 14(1_suppl): 8S-16S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324598

ABSTRACT

STUDY DESIGN: This paper presents a description of a conceptual framework and methodology that is applicable to the manuscripts that comprise this focus issue. OBJECTIVES: Our goal is to present a conceptual framework which is relied upon to better understand the processes through which surgeons make therapeutic decisions around how to treat thoracolumbar burst fractures (TL) fractures. METHODS: We will describe the methodology used in the AO Spine TL A3/4 Study prospective observational study and how the radiographs collected for this study were utilized to study the relationships between various variables that factor into surgeon decision making. RESULTS: With 22 expert spine trauma surgeons analyzing the acute CT scans of 183 patients with TL fractures we were able to perform pairwise analyses, look at reliability and correlations between responses and develop frequency tables, and regression models to assess the relationships and interactions between variables. We also used machine learning to develop decision trees. CONCLUSIONS: This paper outlines the overall methodological elements that are common to the subsequent papers in this focus issue.

3.
Global Spine J ; 14(1_suppl): 25S-31S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324599

ABSTRACT

STUDY DESIGN: Retrospective analysis of prospectively collected data. OBJECTIVES: Our goal was to assess radiographic characteristics associated with agreement and disagreement in treatment recommendation in thoracolumbar (TL) burst fractures. METHODS: A panel of 22 AO Spine Knowledge Forum Trauma experts reviewed 183 cases and were asked to: (1) classify the fracture; (2) assess degree of certainty of PLC disruption; (3) assess degree of comminution; and (4) make a treatment recommendation. Equipoise threshold used was 77% (77:23 distribution of uncertainty or 17 vs 5 experts). Two groups were created: consensus vs equipoise. RESULTS: Of the 183 cases reviewed, the experts reached full consensus in only 8 cases (4.4%). Eighty-one cases (44.3%) were included in the agreement group and 102 cases (55.7%) in the equipoise group. A3/A4 fractures were more common in the equipoise group (92.0% vs 83.7%, P < .001). The agreement group had higher degree of certainty of PLC disruption [35.8% (SD 34.2) vs 27.6 (SD 27.3), P < .001] and more common use of the M1 modifier (44.3% vs 38.3%, P < .001). Overall, the degree of comminution was slightly higher in the equipoise group [47.8 (SD 20.5) vs 45.7 (SD 23.4), P < .001]. CONCLUSIONS: The agreement group had a higher degree of certainty of PLC injury and more common use of M1 modifier (more type B fractures). The equipoise group had more A3/A4 type fractures. Future studies are required to identify the role of comminution in decision making as degree of comminution was slightly higher in the equipoise group.

4.
Global Spine J ; 14(1_suppl): 56S-61S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324597

ABSTRACT

STUDY DESIGN: Predictive algorithm via decision tree. OBJECTIVES: Artificial intelligence (AI) remain an emerging field and have not previously been used to guide therapeutic decision making in thoracolumbar burst fractures. Building such models may reduce the variability in treatment recommendations. The goal of this study was to build a mathematical prediction rule based upon radiographic variables to guide treatment decisions. METHODS: Twenty-two surgeons from the AO Knowledge Forum Trauma reviewed 183 cases from the Spine TL A3/A4 prospective study (classification, degree of certainty of posterior ligamentous complex (PLC) injury, use of M1 modifier, degree of comminution, treatment recommendation). Reviewers' regions were classified as Europe, North/South America and Asia. Classification and regression trees were used to create models that would predict the treatment recommendation based upon radiographic variables. We applied the decision tree model which accounts for the possibility of non-normal distributions of data. Cross-validation technique as used to validate the multivariable analyses. RESULTS: The accuracy of the model was excellent at 82.4%. Variables included in the algorithm were certainty of PLC injury (%), degree of comminution (%), the use of M1 modifier and geographical regions. The algorithm showed that if a patient has a certainty of PLC injury over 57.5%, then there is a 97.0% chance of receiving surgery. If certainty of PLC injury was low and comminution was above 37.5%, a patient had 74.2% chance of receiving surgery in Europe and Asia vs 22.7% chance in North/South America. Throughout the algorithm, the use of the M1 modifier increased the probability of receiving surgery by 21.4% on average. CONCLUSION: This study presents a predictive analytic algorithm to guide decision-making in the treatment of thoracolumbar burst fractures without neurological deficits. PLC injury assessment over 57.5% was highly predictive of receiving surgery (97.0%). A high degree of comminution resulted in a higher chance of receiving surgery in Europe or Asia vs North/South America. Future studies could include clinical and other variables to enhance predictive ability or use machine learning for outcomes prediction in thoracolumbar burst fractures.

5.
Global Spine J ; 14(1_suppl): 17S-24S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324600

ABSTRACT

STUDY DESIGN: Reliability study utilizing 183 injury CT scans by 22 spine trauma experts with assessment of radiographic features, classification of injuries and treatment recommendations. OBJECTIVES: To assess the reliability of the AOSpine TL Injury Classification System (TLICS) including the categories within the classification and the M1 modifier. METHODS: Kappa and Intraclass correlation coefficients were produced. Associations of various imaging characteristics (comminution, PLC status) and treatment recommendations were analyzed through regression analysis. Multivariable logistic regression modeling was used for making predictive algorithms. RESULTS: Reliability of the AO Spine TLICS at differentiating A3 and A4 injuries (N = 71) (K = .466; 95% CI .458 - .474; P < .001) demonstrated moderate agreement. Similarly, the average intraclass correlation coefficient (ICC) amongst A3 and A4 injuries was excellent (ICC = .934; 95% CI .919 - .947; P < .001) and the ICC between individual measures was moderate (ICC = .403; 95% CI .351 - .461; P < .001). The overall agreement on the utilization of the M1 modifier amongst A3 and A4 injuries was fair (K = .161; 95% CI .151 - .171; P < .001). The ICC for PLC status in A3 and A4 injuries averaged across all measures was excellent (ICC = .936; 95% CI .922 - .949; P < .001). The M1 modifier suggests respondents are nearly 40% more confident that the PLC is injured amongst all injuries. The M1 modifier was employed at a higher frequency as injuries were classified higher in the classification system. CONCLUSIONS: The reliability of surgeons differentiating between A3 and A4 injuries in the AOSpine TLICS is substantial and the utilization of the M1 modifier occurs more frequently with higher grades in the system.

6.
Global Spine J ; 14(1_suppl): 49S-55S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324602

ABSTRACT

STUDY DESIGN: Retrospective analysis of prospectively collected data. OBJECTIVES: To compare decision-making between an expert panel and real-world spine surgeons in thoracolumbar burst fractures (TLBFs) without neurological deficits and analyze which factors influence surgical decision-making. METHODS: This study is a sub-analysis of a prospective observational study in TL fractures. Twenty two experts were asked to review 183 CT scans and recommend treatment for each fracture. The expert recommendation was based on radiographic review. RESULTS: Overall agreement between the expert panel and real-world surgeons regarding surgery was 63.2%. In 36.8% of cases, the expert panel recommended surgery that was not performed in real-world scenarios. Conversely, in cases where the expert panel recommended non-surgical treatment, only 38.6% received non-surgical treatment, while 61.4% underwent surgery. A separate analysis of A3 and A4 fractures revealed that expert panel recommended surgery for 30% of A3 injuries and 68% of A4 injuries. However, 61% of patients with both A3 and A4 fractures received surgery in the real world. Multivariate analysis demonstrated that a 1% increase in certainty of PLC injury led to a 4% increase in surgery recommendation among the expert panel, while a .2% increase in the likelihood of receiving surgery in the real world. CONCLUSION: Surgical decision-making varied between the expert panel and real-world treating surgeons. Differences appear to be less evident in A3/A4 burst fractures making this specific group of fractures a real challenge independent of the level of expertise.

7.
Global Spine J ; 14(1_suppl): 41S-48S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324603

ABSTRACT

STUDY DESIGN: A prospective study. OBJECTIVE: to evaluate the impact of vertebral body comminution and Posterior Ligamentous Complex (PLC) integrity on the treatment recommendations of thoracolumbar fractures among an expert panel of 22 spine surgeons. METHODS: A review of 183 prospectively collected thoracolumbar burst fracture computed tomography (CT) scans by an expert panel of 22 trauma spine surgeons to assess vertebral body comminution and PLC integrity. This study is a sub-study of a prospective observational study of thoracolumbar burst fractures (Spine TL A3/A4). Each expert was asked to grade the degree of comminution and certainty about the PLC disruption from 0 to 100, with 0 representing the intact vertebral body or intact PLC and 100 representing complete comminution or complete PLC disruption, respectively. RESULTS: ≥45% comminution had a 74% chance of having surgery recommended, while <25% comminution had an 86.3% chance of non-surgical treatment. A comminution from 25 to 45% had a 57% chance of non-surgical management. ≥55% PLC injury certainity had a 97% chance of having surgery, and ≥45-55% PLC injury certainty had a 65%. <20% PLC injury had a 64% chance of having non-operative treatment. A 20 to 45% PLC injury certainity had a 56% chance of non-surgical management. There was fair inter-rater agreement on the degree of comminution (ICC .57 [95% CI 0.52-.63]) and the PLC integrity (ICC .42 [95% CI 0.37-.48]). CONCLUSION: The study concludes that vetebral comminution and PLC integrity are major dterminant in decision making of thoracolumbar fractures without neurological deficit. However, more objective, reliable, and accurate methods of assessment of these variables are warranted.

8.
Global Spine J ; 14(1_suppl): 32S-40S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38324601

ABSTRACT

STUDY DESIGN: Prospective Observational Study. OBJECTIVE: To determine the alignment of the AO Spine Thoracolumbar Injury Classification system and treatment algorithm with contemporary surgical decision making. METHODS: 183 cases of thoracolumbar burst fractures were reviewed by 22 AO Spine Knowledge Forum Trauma experts. These experienced clinicians classified the fracture morphology, integrity of the posterior ligamentous complex and degree of comminution. Management recommendations were collected. RESULTS: There was a statistically significant stepwise increase in rates of operative management with escalating category of injury (P < .001). An excellent correlation existed between recommended expert management and the actual treatment of each injury category: A0/A1/A2 (OR 1.09, 95% CI 0.70-1.69, P = .71), A3/4 (OR 1.62, 95% CI 0.98-2.66, P = .58) and B1/B2/C (1.00, 95% CI 0.87-1.14, P = .99). Thoracolumbar A4 fractures were more likely to be surgically stabilized than A3 fractures (68.2% vs 30.9%, P < .001). A modifier indicating indeterminate ligamentous injury increased the rate of operative management when comparing type B and C injuries to type A3/A4 injuries (OR 39.19, 95% CI 20.84-73.69, P < .01 vs OR 27.72, 95% CI 14.68-52.33, P < .01). CONCLUSIONS: The AO Spine Thoracolumbar Injury Classification system introduces fracture morphology in a rational and hierarchical manner of escalating severity. Thoracolumbar A4 complete burst fractures were more likely to be operatively managed than A3 fractures. Flexion-distraction type B injuries and translational type C injuries were much more likely to have surgery recommended than type A fractures regardless of the M1 modifier. A suspected posterior ligamentous injury increased the likelihood of surgeons favoring surgical stabilization.

9.
Global Spine J ; 14(3): 1061-1069, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37849275

ABSTRACT

STUDY DESIGN: Bibliometric analysis. OBJECTIVES: An analysis of the literature related to the assessment and management of spinal trauma was undertaken to allow the identification of top contributors, collaborations and research trends. METHODS: A search to identify original articles published in English between 2011 and 2020 was done using specific keywords in the Web of Science database. After screening, the top 300 most cited articles were analyzed using Biblioshiny R software. RESULTS: The highest number of contributions were from the Thomas Jefferson University, USA, University of Toronto and University of British Columbia, Canada. The top 3 most prolific authors were Vaccaro AR, Arabi B, and Oner FC. The USA and Canada were among the top contributing countries; Switzerland and Brazil had most multiple country co-authored articles. The most relevant journals were the European Spine Journal, Spine and Spine Journal. Three of the 5 most cited articles were about classification systems of fractures. The keyword analysis included clusters for different spinal regions, spinal cord injury, classification agreement and reliability studies, imaging related studies, surgical techniques and outcomes. CONCLUSIONS: The study identified the most impactful authors and affiliations, and determined the journals where most impactful research is published in the field. Study also compared the productivity and collaborations across countries. The study highlighted the impact of development of new classification systems, and identified research trends including instrumentation, fixation and decompression techniques, epidemiology and recovery after spinal trauma.

10.
Spine (Phila Pa 1976) ; 49(3): 165-173, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37970681

ABSTRACT

STUDY DESIGN: Global cross-sectional survey. OBJECTIVE: To establish a surgical algorithm for sacral fractures based on the Arbeitsgemeinschaft für Osteosynthesefragen (AO) Spine Sacral Injury Classification System. SUMMARY OF BACKGROUND DATA: Although the AO Spine Sacral Injury Classification has been validated across an international audience of surgeons, a consensus on a surgical algorithm for sacral fractures using the Sacral AO Spine Injury Score (Sacral AOSIS) has yet to be developed. METHODS: A survey was sent to general orthopedic surgeons, orthopedic spine surgeons, and neurosurgeons across the five AO spine regions of the world. Descriptions of controversial sacral injuries based on different fracture subtypes were given, and surgeons were asked whether the patient should undergo operative or nonoperative management. The results of the survey were used to create a surgical algorithm based on each subtype's sacral AOSIS. RESULTS: An international agreement of 70% was decided on by the AO Spine Knowledge Forum Trauma experts to indicate a recommendation of initial operative intervention. Using this, sacral fracture subtypes of AOSIS 5 or greater were considered operative, while those with AOSIS 4 or less were generally nonoperative. For subtypes with an AOSIS of 3 or 4, if the sacral fracture was associated with an anterior pelvic ring injury (M3 case-specific modifier), intervention should be left to the surgeons' discretion. CONCLUSION: The AO Spine Sacral Injury Classification System offers a validated hierarchical system to approach sacral injuries. Through multispecialty and global surgeon input, a surgical algorithm was developed to determine appropriate operative indications for sacral trauma. Further validation is required, but this algorithm provides surgeons across the world with the basis for discussion and the development of standards of care and treatment.


Subject(s)
Spinal Fractures , Spinal Injuries , Humans , Cross-Sectional Studies , Spinal Fractures/therapy , Spinal Injuries/therapy , Sacrum/injuries , Algorithms
11.
J Neurosurg Spine ; 39(6): 831-838, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37724834

ABSTRACT

OBJECTIVE: Thoracic costotransversectomies are among the most invasive spinal procedures performed and are associated with unanticipated medical and surgical complications. Few studies have specifically assessed medical and surgical complications after a thoracic corpectomy via a costotransversectomy approach (TCT) or compared complications between different diagnoses. The purpose of this study was to describe the differences in operative characteristics and rates of 90-day surgical and medical complications in patients undergoing TCTs based on underlying diagnosis. METHODS: A retrospective chart review of 123 consecutive patients who underwent TCTs at a single academic referral center over a 10-year period was conducted. Surgical indication, corpectomy levels, intraoperative dural tears, pleural injuries, neurological injuries, 90-day mortality, 90-day reoperations, and hospital-based medical complications were evaluated. RESULTS: One hundred twenty-three patients underwent a TCT, including 35 for infection, 42 for malignancy, 23 for trauma, and 23 for deformity. Fifty-nine patients (48.0%) had at least one medical or 90-day operative complication, with 22 patients (17.9%) having two or more complications. Patients with a diagnosis of infection were more likely to undergo two-level corpectomies (80% vs 26.1%, p < 0.0005). Patients with a diagnosis of malignancy had significantly higher 90-day mortality (19.0% vs 4.9%, p = 0.022) and were more likely to undergo three-level corpectomies (9.5% vs 3.7%, p = 0.002) and upper thoracic (T1-4) corpectomies (37.9% vs 12.4%, p = 0.001), and sustain a pleural injury (14.3% vs 2.5%, p = 0.019). Ninety-day reoperation rates (p = 0.970), postoperative ventilator days (p = 0.224), intensive care unit stays (p = 0.350), hospital lengths of stay (p = 0.094), neurological injuries (p = 0.338), and dural tears (p = 0.794) did not significantly vary between the different groups. CONCLUSIONS: Nearly half of the patients undergoing a TCT will experience an unanticipated short-term complication related to the procedure. Short-term complications may vary with the underlying patient diagnosis.


Subject(s)
Neoplasms , Orthopedic Procedures , Humans , Retrospective Studies , Thoracic Vertebrae/surgery , Postoperative Complications/surgery , Orthopedic Procedures/methods , Treatment Outcome
12.
Clin Spine Surg ; 36(8): E383-E389, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37363830

ABSTRACT

STUDY DESIGN: Survey of cases. OBJECTIVE: To evaluate the opinion of experts in the diagnostic process of clinically relevant Spinal Post-traumatic Deformity (SPTD). SUMMARY OF BACKGROUND DATA: SPTD is a potential complication of spine trauma that can cause decreased function and quality of life impairment. The question of when SPTD becomes clinically relevant is yet to be resolved. METHODS: The survey of 7 cases was sent to 31 experts. The case presentation was medical history, diagnostic assessment, evaluation of diagnostic assessment, diagnosis, and treatment options. Means, ranges, percentages of participants, and descriptive statistics were calculated. RESULTS: Seventeen spinal surgeons reviewed the presented cases. The items' fracture type and complaints were rated by the participants as more important, but no agreement existed on the items of medical history. In patients with possible SPTD in the cervical spine (C) area, participants requested a conventional radiograph (CR) (76%-83%), a flexion/extension CR (61%-71%), a computed tomography (CT)-scan (76%-89%), and a magnetic resonance (MR)-scan (89%-94%). In thoracolumbar spine (ThL) cases, full spine CR (89%-100%), CT scan (72%-94%), and MR scan (65%-94%) were requested most often. There was a consensus on 5 out of 7 cases with clinically relevant SPTD (82%-100%). When consensus existed on the diagnosis of SPTD, there was a consensus on the case being compensated or decompensated and being symptomatic or asymptomatic. CONCLUSIONS: There was strong agreement in 5 out of 7 cases on the presence of the diagnosis of clinically relevant SPTD. Among spine experts, there is a strong consensus to use CT scan and MR scan, a cervical CR for C-cases, and a full spine CR for ThL-cases. The lack of agreement on items of the medical history suggests that a Delphi study can help us reach a consensus on the essential items of clinically relevant SPTD. LEVEL OF EVIDENCE: Level V.


Subject(s)
Clinical Relevance , Spinal Injuries , Humans , Consensus , Quality of Life , Spinal Injuries/diagnosis , Spinal Injuries/diagnostic imaging , Cervical Vertebrae
13.
Clin Spine Surg ; 36(2): 43-53, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36006406

ABSTRACT

The Arbeitsgemeinschaft fur Osteosynthese fragen Spine Sacral Injury Classification hierarchically separates fractures based on their injury severity with A-type fractures representing less severe injuries and C-type fractures representing the most severe fracture types. C0 fractures represent moderately severe injuries and have historically been referred to as nondisplaced "U-type" fractures. Injury management of these fractures can be controversial. Therefore, the purpose of this narrative review is to first discuss the Arbeitsgemeinschaft fur Osteosynthese fragen Spine Sacral Injury Classification System and describe the different fracture types and classification modifiers, with particular emphasis on C0 fracture types. The narrative review will then focus on the epidemiology and etiology of C0 fractures with subsequent discussion focused on the clinical presentation for patients with these injuries. Next, we will describe the imaging findings associated with these injuries and discuss the injury management of these injuries with particular emphasis on operative management. Finally, we will outline the outcomes and complications that can be expected during the treatment of these injuries.


Subject(s)
Fractures, Bone , Spinal Fractures , Spinal Injuries , Humans , Spinal Fractures/diagnostic imaging , Spinal Fractures/surgery , Spinal Injuries/complications , Sacrum/diagnostic imaging , Sacrum/surgery , Retrospective Studies
14.
J Neurosurg Spine ; 38(1): 31-41, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35986731

ABSTRACT

OBJECTIVE: The objective of this paper was to determine the interobserver reliability and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeon experience (< 5 years, 5-10 years, 10-20 years, and > 20 years) and surgical subspecialty (orthopedic spine surgery, neurosurgery, and "other" surgery). METHODS: A total of 11,601 assessments of upper cervical spine injuries were evaluated based on the AO Spine Upper Cervical Injury Classification System. Reliability and reproducibility scores were obtained twice, with a 3-week time interval. Descriptive statistics were utilized to examine the percentage of accurately classified injuries, and Pearson's chi-square or Fisher's exact test was used to screen for potentially relevant differences between study participants. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS: The intraobserver reproducibility was substantial for surgeon experience level (< 5 years: 0.74 vs 5-10 years: 0.69 vs 10-20 years: 0.69 vs > 20 years: 0.70) and surgical subspecialty (orthopedic spine: 0.71 vs neurosurgery: 0.69 vs other: 0.68). Furthermore, the interobserver reliability was substantial for all surgical experience groups on assessment 1 (< 5 years: 0.67 vs 5-10 years: 0.62 vs 10-20 years: 0.61 vs > 20 years: 0.62), and only surgeons with > 20 years of experience did not have substantial reliability on assessment 2 (< 5 years: 0.62 vs 5-10 years: 0.61 vs 10-20 years: 0.61 vs > 20 years: 0.59). Orthopedic spine surgeons and neurosurgeons had substantial intraobserver reproducibility on both assessment 1 (0.64 vs 0.63) and assessment 2 (0.62 vs 0.63), while other surgeons had moderate reliability on assessment 1 (0.43) and fair reliability on assessment 2 (0.36). CONCLUSIONS: The international reliability and reproducibility scores for the AO Spine Upper Cervical Injury Classification System demonstrated substantial intraobserver reproducibility and interobserver reliability regardless of surgical experience and spine subspecialty. These results support the global application of this classification system.


Subject(s)
Spinal Injuries , Surgeons , Humans , Reproducibility of Results , Observer Variation , Spinal Injuries/diagnosis , Spinal Injuries/surgery , Cervical Vertebrae/surgery
15.
Global Spine J ; : 21925682221124100, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36036763

ABSTRACT

STUDY DESIGN: Global Survey. OBJECTIVE: To determine the accuracy, interobserver reliability, and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeons' AO Spine region of practice (Africa, Asia, Central/South America, Europe, Middle East, and North America). METHODS: A total of 275 AO Spine members assessed 25 upper cervical spine injuries and classified them according to the AO Spine Upper Cervical Injury Classification System. Reliability, reproducibility, and accuracy scores were obtained over two assessments administered at three-week intervals. Kappa coefficients (ƙ) determined the interobserver reliability and intraobserver reproducibility. RESULTS: On both assessments, participants from Europe and North America had the highest classification accuracy, while participants from Africa and Central/South America had the lowest accuracy (P < .0001). Participants from Africa (assessment 1 (AS1):ƙ = .487; AS2:0.491), Central/South America (AS1:ƙ = .513; AS2:0.511), and the Middle East (AS1:0.591; AS2: .599) achieved moderate reliability, while participants from North America (AS1:ƙ = .673; AS2:0.648) and Europe (AS1:ƙ = .682; AS2:0.681) achieved substantial reliability. Asian participants obtained substantial reliability on AS1 (ƙ = .632), but moderate reliability on AS2 (ƙ = .566). Although there was a large effect size, the low number of participants in certain regions did not provide adequate certainty that AO regions affected the likelihood of participants having excellent reproducibility (P = .342). CONCLUSIONS: The AO Spine Upper Cervical Injury Classification System can be applied with high accuracy, interobserver reliability, and intraobserver reproducibility. However, lower classification accuracy and reliability were found in regions of Africa and Central/South America, especially for severe atlas injuries (IIB and IIC) and atypical hangman's type fractures (IIIB injuries).

16.
Injury ; 53(10): 3248-3254, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36038389

ABSTRACT

PURPOSE: To assess the accuracy and reliability of the AO Spine Upper Cervical Injury Classification System based on a surgeons' work setting and trauma center affiliation. METHODS: A total of 275 AO Spine members participated in a validation of 25 upper cervical spine injuries, which were evaluated by computed tomography (CT) scans. Each participant was grouped based on their work setting (academic, hospital-employed, or private practice) and their trauma center affiliation (Level I, Level II or III, and Level IV or no trauma center). The classification accuracy was calculated as percent of correct classifications, while interobserver reliability, and intraobserver reproducibility were evaluated based on Fleiss' Kappa coefficient. RESULTS: The overall classification accuracy for surgeons affiliated with a level I trauma center was significantly greater than participants affiliated with a level II/III center or a level IV/no trauma center on assessment one (p1<0.0001) and two (p2 = 0.0003). On both assessments, surgeons affiliated with a level I or a level II/III trauma center were significantly more accurate at identifying IIIB injury types (p1 = 0.0007; p2 = 0.0064). Academic surgeons and hospital employed surgeons were significantly more likely to correctly classify type IIIB injuries on assessment one (p1 = 0.0146) and two (p2 = 0.0015). When evaluating classification reliability, the largest differences between work settings and trauma center affiliations was identified in type IIIB injuries. CONCLUSION: Type B injuries are the most difficult injury type to correctly classify. They are classified with greater reliability and classification accuracy when evaluated by academic surgeons, hospital-employed surgeons, and surgeons associated with higher-level trauma centers (I or II/III).


Subject(s)
Spinal Injuries , Surgeons , Humans , Lumbar Vertebrae/injuries , Observer Variation , Reproducibility of Results , Spinal Injuries/diagnostic imaging , Thoracic Vertebrae/injuries
17.
Spine J ; 22(12): 2042-2049, 2022 12.
Article in English | MEDLINE | ID: mdl-35964830

ABSTRACT

BACKGROUND CONTEXT: Prior upper cervical spine injury classification systems have focused on injuries to the craniocervical junction (CCJ), atlas, and dens independently. However, no previous system has classified upper cervical spine injuries using a comprehensive system incorporating all injuries from the occiput to the C2-3 joint. PURPOSE: To (1) determine the accuracy of experts at correctly classifying upper cervical spine injuries based on the recently proposed AO Spine Upper Cervical Injury Classification System (2) to determine their interobserver reliability and (3) identify the intraobserver reproducibility of the experts. STUDY DESIGN/SETTING: International Multi-Center Survey. PATIENT SAMPLE: A survey of international spine surgeons on 29 unique upper cervical spine injuries. OUTCOME MEASURES: Classification accuracy, interobserver reliability, intraobserver reproducibility. METHODS: Thirteen international AO Spine Knowledge Forum Trauma members participated in two live webinar-based classifications of 29 upper cervical spine injuries presented in random order, four weeks apart. Percent agreement with the gold-standard and kappa coefficients (ƙ) were calculated to determine the interobserver reliability and intraobserver reproducibility. RESULTS: Raters demonstrated 80.8% and 82.7% accuracy with identification of the injury classification (combined location and type) on the first and second assessment, respectively. Injury classification intraobserver reproducibility was excellent (mean, [range] ƙ=0.82 [0.58-1.00]). Excellent interobserver reliability was found for injury location (ƙ = 0.922 and ƙ=0.912) on both assessments, while injury type was substantial (ƙ=0.689 and 0.699) on both assessments. This correlated to a substantial overall interobserver reliability (ƙ=0.729 and 0.732). CONCLUSIONS: Early phase validation demonstrated classification of upper cervical spine injuries using the AO Spine Upper Cervical Injury Classification System to be accurate, reliable, and reproducible. Greater than 80% accuracy was detected for injury classification. The intraobserver reproducibility was excellent, while the interobserver reliability was substantial.


Subject(s)
Spinal Injuries , Surgeons , Humans , Reproducibility of Results , Spinal Injuries/diagnosis , Cervical Vertebrae/injuries , Observer Variation
18.
J Clin Neurosci ; 103: 163-171, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35907351

ABSTRACT

BACKGROUND: Burst fractures of the fifth lumbar vertebra (L5) are rare injuries and typically occur because of high-energy axial compressive load. Their unique anatomy and biomechanical characteristics distinguish them from other lumbar spine injuries. To the best of our knowledge, the treatment strategies for L5 burst fractures have not been thoroughly described. The aims of this case series and systematic review were to highlight the treatment strategies and outcomes of the L5 burst fractures. METHODS: We performed a retrospective case series of 8 patients treated for burst L5 fractures in our institution between 2005 and 2020. Additionally, a systematic review via PubMed and Cochrane Library databases according to PRISMA guidelines was performed to review L5 burst fractures treatment strategies. Only Articles in English with full text available were included. The references of the selected studies were checked to find all possible related articles. Treatment strategies were conservative, posterior segmental instrumentation and fixation (PSIF), PSIF with anterior corpectomy (AC), and PSIF with posterior corpectomy (PC). Outcomes measures included neurological status, radiological regional alignment, and complications. RESULTS: A total of 1449 publications were found, and 29 articles were finally selected for analysis. Of those, 15 were retrospective case reports, and 14 were retrospective case series. One hundred and sixty-nine patients were found in the review. The author's eight cases were added to the found in the literature for a methodological quality assessment. There were 52 (29%) patients managed non-operative, and 125 (71%) underwent surgery. One-hundred-two patients were neurologically intact, of whom 46 were managed non-operative. Canal compromise in intact patients ranged between 20 and 90%. Posterior segmental fixation and instrumentation with decompression was the preferred surgical strategy in patients with neurological deficits. Patients with combined anterior column restoration and anterior approach showed vertebral height and lordosis restoration. A 79% of the operative treated group reported neurological improvement. Patients with pre-operative neurological deficit managed non-operative reported the highest rate of complications (33.3%). CONCLUSION: In the setting of L5 burst fractures, neurological injuries have a promising prognosis after surgery and are not correlated with the degree of canal stenosis. The compromise of the L5 vertebra affects the sagittal balance and its restoration can be achieved with an anterior corpectomy. Nonoperative management can be considered in cases of reasonable alignment, and no neurologic deficit.


Subject(s)
Fractures, Compression , Spinal Fractures , Decompression, Surgical , Humans , Lumbar Vertebrae , Retrospective Studies , Thoracic Vertebrae , Treatment Outcome
19.
Spine (Phila Pa 1976) ; 47(22): 1541-1548, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35877555

ABSTRACT

STUDY DESIGN: Global cross-sectional survey. OBJECTIVE: To determine the classification accuracy, interobserver reliability, and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on an international group of AO Spine members. SUMMARY OF BACKGROUND DATA: Previous upper cervical spine injury classifications have primarily been descriptive without incorporating a hierarchical injury progression within the classification system. Further, upper cervical spine injury classifications have focused on distinct anatomical segments within the upper cervical spine. The AO Spine Upper Cervical Injury Classification System incorporates all injuries of the upper cervical spine into a single classification system focused on a hierarchical progression from isolated bony injuries (type A) to fracture dislocations (type C). METHODS: A total of 275 AO Spine members participated in a validation aimed at classifying 25 upper cervical spine injuries through computed tomography scans according to the AO Spine Upper Cervical Classification System. The validation occurred on two separate occasions, three weeks apart. Descriptive statistics for percent agreement with the gold-standard were calculated and the Pearson χ 2 test evaluated significance between validation groups. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS: The accuracy of AO Spine members to appropriately classify upper cervical spine injuries was 79.7% on assessment 1 (AS1) and 78.7% on assessment 2 (AS2). The overall intraobserver reproducibility was substantial (κ=0.70), while the overall interobserver reliability for AS1 and AS2 was substantial (κ=0.63 and κ=0.61, respectively). Injury location had higher interobserver reliability (AS1: κ = 0.85 and AS2: κ=0.83) than the injury type (AS1: κ=0.59 and AS2: 0.57) on both assessments. CONCLUSION: The global validation of the AO Spine Upper Cervical Injury Classification System demonstrated substantial interobserver agreement and intraobserver reproducibility. These results support the universal applicability of the AO Spine Upper Cervical Injury Classification System. LEVEL OF EVIDENCE: 4.


Subject(s)
Spinal Diseases , Spinal Injuries , Humans , Reproducibility of Results , Observer Variation , Cross-Sectional Studies , Spinal Injuries/diagnostic imaging , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/injuries
20.
J Eur CME ; 11(1): 2014042, 2022.
Article in English | MEDLINE | ID: mdl-35173996

ABSTRACT

COVID-19 pandemic created a need to improvise and redefine blended learning to be executed fully online. Background information on the effectiveness of fully online blended learning activities, especially for surgical disciplines is limited. This study describes a fully online blended learning course format on spinal surgery and aims to provide data regarding it effectiveness. Fully online blended courses on three topics of spinal surgery designed as six-week asynchronous and followed by 3-day live parts. Learning gaps (LGs) were identified with a survey at the beginning of asynchronous part, at its end, and at the end of the live part. The effectiveness of the asynchronous and live parts was assessed by LGs and a quiz, login statistics of learners and faculty and a post-course survey. Participants' LGs decreased in all courses, statistically significant in two. Faculty and learner login rates significantly correlated with each other. Faculty and learner satisfaction was very high. A fully online blended learning course can be delivered effectively on spine surgery with a high participant and faculty satisfaction rate. The asynchronous part contributes to learning significantly.

SELECTION OF CITATIONS
SEARCH DETAIL
...