Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 20(1): 159, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37408003

ABSTRACT

In experimental stroke, ovariectomized (OVX) adult rats have larger infarct volumes and greater sensory-motor impairment as compared to ovary-intact females and is usually interpreted to indicate that ovarian hormones are neuroprotective for stroke. Previous work from our lab shows that middle-aged, acyclic reproductively senescent (RS) females have worse stroke outcomes as compared to adult (normally cycling) females. We hypothesized that if loss of ovarian estrogen is the critical determinant of stroke outcomes, then ovary-intact middle-aged acyclic females, who have reduced levels of estradiol, should have similar stroke outcomes as age-matched OVX. Instead, the data demonstrated that OVX RS animals showed better sensory-motor function after stroke and reduced infarct volume as compared to ovary-intact females. Inflammatory cytokines were decreased in the aging ovary after stroke as compared to non-stroke shams, which led to the hypothesis that immune cells may be extravasated from the ovaries post-stroke. Flow cytometry indicated reduced overall T cell populations in the aging ovary after middle cerebral artery occlusion (MCAo), with a paradoxical increase in regulatory T cells (Tregs) and M2-like macrophages. Moreover, in the brain, OVX RS animals showed increased Tregs, increased M2-like macrophages, and increased MHC II + cells as compared to intact RS animals, which have all been shown to be correlated with better prognosis after stroke. Depletion of ovary-resident immune cells after stroke suggests that there may be an exaggerated response to ischemia and possible increased burden of the inflammatory response via extravasation of these cells into circulation. Increased anti-inflammatory cells in the brain of OVX RS animals further supports this hypothesis. These data suggest that stroke severity in aging females may be exacerbated by the aging ovary and underscore the need to assess immunological changes in this organ after stroke.


Subject(s)
Brain Ischemia , Stroke , Female , Rats , Animals , Humans , Ovary , Aging/physiology , Infarction, Middle Cerebral Artery/complications , Ovariectomy
2.
Neurobiol Aging ; 129: 168-177, 2023 09.
Article in English | MEDLINE | ID: mdl-37336171

ABSTRACT

Stroke is a major cause of death and disability worldwide and is also a leading cause of vascular dementia and Alzheimer's disease, with older women experiencing accelerated decline. Our previous studies show that intravenous (iv) injections of miR-20a-3p, a small noncoding RNA (miRNA) delivered after stroke improves acute stroke outcomes in middle-aged male and female rats. The present study tested whether mir-20a-3p treatment would also ameliorate stroke-induced cognitive decline in the chronic phase. Acyclic middle-aged females and age-matched male Sprague Dawley rats were subjected to middle cerebral artery occlusion using endothelin-1 or sham surgery, and treated iv with miR-20a-3p mimics or scrambled oligos at 4 hours, 24 hours, and 70 days post-stroke. Stroke resulted in a significant sensory motor deficit, while miR-20a-3p treatment reduced these deficits in both sexes. Cognitive impairment was assessed periodically for 3 months after stroke using contextual fear conditioning and the novel object recognition task. Overall, the tests of associative and episodic memory were affected by focal ischemia only in female rats, and miR-20a-3p ameliorated the rate of decline.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , MicroRNAs , Stroke , Rats , Female , Male , Animals , Rats, Sprague-Dawley , Sex Characteristics , MicroRNAs/genetics , Infarction, Middle Cerebral Artery/complications , Cognitive Dysfunction/genetics , Brain Ischemia/complications , Brain Ischemia/genetics
3.
Curr Top Behav Neurosci ; 62: 287-308, 2023.
Article in English | MEDLINE | ID: mdl-35332459

ABSTRACT

Stroke is the fifth leading cause of death and as healthcare intervention improves, the number of stroke survivors has also increased. Furthermore, there exists a subgroup of younger adults, who suffer stroke and survive. Given the overall improved survival rate, bettering our understanding of long-term stroke outcomes is critical. In this review we will explore the causes and challenges of known long-term consequences of stroke and if present, their corresponding sex differences in both old and young survivors. We have separated these long-term post-stroke consequences into three categories: mobility and muscle weakness, memory and cognitive deficits, and mental health and mood. Lastly, we discuss the potential of common preclinical stroke models to contribute to our understanding of long-term outcomes following stroke.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Stroke , Adult , Humans , Male , Female , Sex Characteristics , Stroke/complications , Stroke/psychology , Cognition Disorders/complications , Affect
4.
Brain Behav Immun ; 107: 345-360, 2023 01.
Article in English | MEDLINE | ID: mdl-36328163

ABSTRACT

Almost 2/3rds of stroke survivors exhibit vascular cognitive impairment and a third of stroke patients will develop dementia 1-3 years after stroke. These dire consequences underscore the need for effective stroke therapies. In addition to its damaging effects on the brain, stroke rapidly dysregulates the intestinal epithelium, resulting in elevated blood levels of inflammatory cytokines and toxic gut metabolites due to a 'leaky' gut. We tested whether repairing the gut via intestinal epithelial stem cell (IESC) transplants would also improve stroke recovery. Organoids containing IESCs derived from young rats transplanted into older rats after stroke were incorporated into the gut, restored stroke-induced gut dysmorphology and decreased gut permeability, and reduced circulating levels of endotoxin LPS and the inflammatory cytokine IL-17A. Remarkably, IESC transplants also improved stroke-induced acute (4d) sensory-motor disability and chronic (30d) cognitive-affective function. Moreover, IESCs from older animals displayed senescent features and were not therapeutic for stroke. These data underscore the gut as a critical therapeutic target for stroke and demonstrate the effectiveness of gut stem cell therapy.


Subject(s)
Disabled Persons , Motor Disorders , Stroke , Animals , Rats , Humans , Stroke/therapy , Stem Cell Transplantation
5.
Transl Stroke Res ; 13(3): 432-448, 2022 06.
Article in English | MEDLINE | ID: mdl-34570349

ABSTRACT

MicroRNAs have gained popularity as a potential treatment for many diseases, including stroke. This study identifies and characterizes a specific member of the miR-17-92 cluster, miR-20a-3p, as a possible stroke therapeutic. A comprehensive microRNA screening showed that miR-20a-3p was significantly upregulated in astrocytes of adult female rats, which typically have better stroke outcomes, while it was profoundly downregulated in astrocytes of middle-aged females and adult and middle-aged males, groups that typically have more severe stroke outcomes. Assays using primary human astrocytes and neurons show that miR-20a-3p treatment alters mitochondrial dynamics in both cell types. To assess whether stroke outcomes could be improved by elevating astrocytic miR-20a-3p, we created a tetracycline (Tet)-induced recombinant adeno-associated virus (rAAV) construct where miR-20a-3p was located downstream a glial fibrillary acidic protein promoter. Treatment with doxycycline induced miR-20-3p expression in astrocytes, reducing mortality and modestly improving sensory motor behavior. A second Tet-induced rAAV construct was created in which miR-20a-3p was located downstream of a neuron-specific enolase (NSE) promoter. These experiments demonstrate that neuronal expression of miR-20a-3p is vastly more neuroprotective than astrocytic expression, with animals receiving the miR-20a-3p vector showing reduced infarction and sensory motor improvement. Intravenous injections, which are a therapeutically tractable treatment route, with miR-20a-3p mimic 4 h after middle cerebral artery occlusion (MCAo) significantly improved stroke outcomes including infarct volume and sensory motor performance. Improvement was not observed when miR-20a-3p was given immediately or 24 h after MCAo, identifying a unique delayed therapeutic window. Overall, this study identifies a novel neuroprotective microRNA and characterizes several key pathways by which it can improve stroke outcomes.


Subject(s)
MicroRNAs , Stroke , Animals , Disease Models, Animal , Female , Infarction, Middle Cerebral Artery/genetics , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Neuroprotection , Rats , Stroke/genetics , Stroke/metabolism
6.
Exp Neurol ; 332: 113384, 2020 10.
Article in English | MEDLINE | ID: mdl-32585156

ABSTRACT

Males and females possess distinct biological differences that manifest in diverse risk profiles for acute and chronic diseases. A well-documented example of this is ischemic stroke. It has been demonstrated that older females have greater prevalence of, and worse outcome after, ischemic stroke than do males and younger females. Loss of estrogen after menopause is heavily implicated as a contributing factor for this phenomenon; however, there is mounting evidence to suggest that certain risk factors tend to occur more often in older females, such as hypertension and atrial fibrillation, while others more adversely affect females than they do males, such as diabetes and smoking. Sex-specific risk factors, such as oral contraceptive use and menopause, could also contribute to the discrepancy in stroke prevalence and outcome. Additionally, there is evidence to suggest that females tend to present with more nontraditional symptoms of acute stroke than do males, making it more difficult for clinicians to correctly identify the occurrence of a stroke, which may delay the administration of thrombolytic intervention. Finally, certain sociodemographic factors, such as the fact that females were more likely to live alone prior to stroke, may contribute to poorer recovery in females. This review will explore the various co-morbidities and sociodemographic factors that contribute to the greater prevalence of and poorer outcome after stroke in older females and will highlight the critical need for considering sex as a predisposing biological variable in stroke studies.


Subject(s)
Comorbidity , Stroke/complications , Animals , Female , Humans , Male , Risk Factors , Sex Characteristics , Stroke/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...