Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fuel (Lond) ; 2642020 Mar 15.
Article in English | MEDLINE | ID: mdl-33364633

ABSTRACT

Emissions generated from the combustion of coal have been a subject of regulation by the United States Environmental Protection Agency (U.S. EPA) and State agencies for years, as they have been associated with adverse effects on human health and the environment. Over the past several decades, regulations on these facility emissions have become more stringent and have therefore caused industry to look toward new pre- and post-combustion control technologies. In more recent years, there has been a "push" toward renewable and cleaner burning alternative fuels as replacements for traditional fossil fuels. Part of this "push" has been accomplished by States and Regions offering incentives and options for renewable portfolios, which over half of the states now have in some form. The current study investigates the potential changes in both gaseous and particulate emissions from the use of a variety of woody biomass materials as a drop-in replacement for coal as compared to use of 100% bituminous coal. Four different biomass materials are blended individually with coal at 20% and 40% by mass for testing on the U.S. EPA's Multi-Pollutant Control Research Facility, a pilot-scale coal-fired facility located in Research Triangle Park, North Carolina. Emissions are calculated based on measurements from the flue gas to characterize gaseous species (CO, CO2, NOX, SO2, other acid gases, and several organic hazardous air pollutants) as well as fine and ultrafine particulate (mass, size distribution, number count, elemental carbon, organic carbon, and black carbon) and compared among each combination of fuels and 100% bituminous coal.

2.
Fuel (Lond) ; 215: 572-279, 2018.
Article in English | MEDLINE | ID: mdl-31595088

ABSTRACT

Gaseous and particulate emissions generated from the combustion of coal have been associated with adverse effects on human health and the environment, and have therefore been the subject of regulation by federal and state government agencies. Detailed emission characterizations are needed to better understand the impacts of pre- and post-combustion controls on a variety of coals found in the United States (U.S.). While the U.S. Environmental Protection Agency (EPA) requires industry reporting of emissions for criteria and several hazardous air pollutants (HAPs), many of the methods for monitoring and measuring these gaseous and particulate emissions rely on time-integrated sampling techniques. Though these emissions reports provide an overall representation of day-to-day operations, they represent well-controlled operations and do not encompass real combustion events that occur sporadically. The current study not only characterizes emissions from three coals (bituminous, sub-bituminous, and lignite), but also investigates the use of instrumentation for improved measurement and monitoring techniques that provide real-time, continuous emissions data. Testing was completed using the U.S. EPA's Multi-Pollutant Control Research Facility, a pilot-scale coal-fired combustor using industry-standard emission control technologies, in Research Triangle Park, North Carolina. Emissions were calculated based on measurements from the flue gas (pre- and post-electrostatic precipitator), to characterize gaseous species (CO, CO2, O2, NOX, SO2, other acid gases, and several organic HAPs) as well as fine and ultrafine particulate (mass, size distribution, number count, elemental carbon, organic carbon, and black carbon). Comparisons of traditional EPA methods to those made via Fourier Transfer Infrared (FTIR) Spectroscopy for CO, NOX, and SO2 are also reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...