Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Neurosci ; 15: 661569, 2021.
Article in English | MEDLINE | ID: mdl-34248478

ABSTRACT

Stroke survivors can be affected by motor deficits in the hand. Robotic equipment associated with brain-machine interfaces (BMI) may aid the motor rehabilitation of these patients. BMIs involving orthotic control by motor imagery practices have been successful in restoring stroke patients' movements. However, there is still little acceptance of the robotic devices available, either by patients and clinicians, mainly because of the high costs involved. Motivated by this context, this work aims to design and construct the Hand Exoskeleton for Rehabilitation Objectives (HERO) to recover extension and flexion movements of the fingers. A three-dimensional (3D) printing technique in association with textiles was used to produce a lightweight and wearable device. 3D-printed actuators have also been designed to reduce equipment costs. The actuator transforms the torque of DC motors into linear force transmitted by Bowden cables to move the fingers passively. The exoskeleton was controlled by neuroelectric signal-electroencephalography (EEG). Concept tests were performed to evaluate control performance. A healthy volunteer was submitted to a training session with the exoskeleton, according to the Graz-BCI protocol. Ergonomy was evaluated with a two-dimensional (2D) tracking software and correlation analysis. HERO can be compared to ordinary clothing. The weight over the hand was around 102 g. The participant was able to control the exoskeleton with a classification accuracy of 91.5%. HERO project resulted in a lightweight, simple, portable, ergonomic, and low-cost device. Its use is not restricted to a clinical setting. Thus, users will be able to execute motor training with the HERO at hospitals, rehabilitation clinics, and at home, increasing the rehabilitation intervention time. This may support motor rehabilitation and improve stroke survivors life quality.

2.
Neurorehabil Neural Repair ; 33(3): 188-198, 2019 03.
Article in English | MEDLINE | ID: mdl-30722727

ABSTRACT

BACKGROUND: Brain-machine interfaces (BMIs) have been recently proposed as a new tool to induce functional recovery in stroke patients. OBJECTIVE: Here we evaluated long-term effects of BMI training and physiotherapy in motor function of severely paralyzed chronic stroke patients 6 months after intervention. METHODS: A total of 30 chronic stroke patients with severe hand paresis from our previous study were invited, and 28 underwent follow-up assessments. BMI training included voluntary desynchronization of ipsilesional EEG-sensorimotor rhythms triggering paretic upper-limb movements via robotic orthoses (experimental group, n = 16) or random orthoses movements (sham group, n = 12). Both groups received identical physiotherapy following BMI sessions and a home-based training program after intervention. Upper-limb motor assessment scores, electromyography (EMG), and functional magnetic resonance imaging (fMRI) were assessed before (Pre), immediately after (Post1), and 6 months after intervention (Post2). RESULTS: The experimental group presented with upper-limb Fugl-Meyer assessment (cFMA) scores significantly higher in Post2 (13.44 ± 1.96) as compared with the Pre session (11.16 ± 1.73; P = .015) and no significant changes between Post1 and Post2 sessions. The Sham group showed no significant changes on cFMA scores. Ashworth scores and EMG activity in both groups increased from Post1 to Post2. Moreover, fMRI-BOLD laterality index showed no significant difference from Pre or Post1 to Post2 sessions. CONCLUSIONS: BMI-based rehabilitation promotes long-lasting improvements in motor function of chronic stroke patients with severe paresis and represents a promising strategy in severe stroke neurorehabilitation.


Subject(s)
Brain-Computer Interfaces , Stroke Rehabilitation/methods , Stroke/physiopathology , Chronic Disease/rehabilitation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Recovery of Function , Stroke/diagnosis , Treatment Outcome
3.
J Rehabil Med ; 49(6): 449-460, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28597018

ABSTRACT

OBJECTIVE: To review the state of the art of robotic-aided hand physiotherapy for post-stroke rehabilitation, including the use of brain-machine interfaces. Each patient has a unique clinical history and, in response to personalized treatment needs, research into individualized and at-home treatment options has expanded rapidly in recent years. This has resulted in the development of many devices and design strategies for use in stroke rehabilitation. METHODS: The development progression of robotic-aided hand physiotherapy devices and brain-machine interface systems is outlined, focussing on those with mechanisms and control strategies designed to improve recovery outcomes of the hand post-stroke. A total of 110 commercial and non-commercial hand and wrist devices, spanning the 2 major core designs: end-effector and exoskeleton are reviewed. RESULTS: The growing body of evidence on the efficacy and relevance of incorporating brain-machine interfaces in stroke rehabilitation is summarized. The challenges involved in integrating robotic rehabilitation into the healthcare system are discussed. CONCLUSION: This review provides novel insights into the use of robotics in physiotherapy practice, and may help system designers to develop new devices.


Subject(s)
Brain-Computer Interfaces/statistics & numerical data , Hand Injuries/rehabilitation , Robotics/methods , Stroke Rehabilitation/methods , Stroke/complications , Humans , Stroke/pathology
4.
Sci Rep ; 6: 30383, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27513629

ABSTRACT

Brain-machine interfaces (BMIs) provide a new assistive strategy aimed at restoring mobility in severely paralyzed patients. Yet, no study in animals or in human subjects has indicated that long-term BMI training could induce any type of clinical recovery. Eight chronic (3-13 years) spinal cord injury (SCI) paraplegics were subjected to long-term training (12 months) with a multi-stage BMI-based gait neurorehabilitation paradigm aimed at restoring locomotion. This paradigm combined intense immersive virtual reality training, enriched visual-tactile feedback, and walking with two EEG-controlled robotic actuators, including a custom-designed lower limb exoskeleton capable of delivering tactile feedback to subjects. Following 12 months of training with this paradigm, all eight patients experienced neurological improvements in somatic sensation (pain localization, fine/crude touch, and proprioceptive sensing) in multiple dermatomes. Patients also regained voluntary motor control in key muscles below the SCI level, as measured by EMGs, resulting in marked improvement in their walking index. As a result, 50% of these patients were upgraded to an incomplete paraplegia classification. Neurological recovery was paralleled by the reemergence of lower limb motor imagery at cortical level. We hypothesize that this unprecedented neurological recovery results from both cortical and spinal cord plasticity triggered by long-term BMI usage.


Subject(s)
Brain-Computer Interfaces , Gait/physiology , Neurological Rehabilitation/methods , Paraplegia/rehabilitation , Spinal Cord Injuries/rehabilitation , Walking/physiology , Adolescent , Adult , Electroencephalography , Feedback, Sensory , Female , Humans , Interdisciplinary Communication , Locomotion , Lower Extremity , Male , Paraplegia/physiopathology , Robotics , Spinal Cord Injuries/physiopathology , Young Adult
5.
Ann Neurol ; 74(1): 100-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23494615

ABSTRACT

OBJECTIVE: Chronic stroke patients with severe hand weakness respond poorly to rehabilitation efforts. Here, we evaluated efficacy of daily brain-machine interface (BMI) training to increase the hypothesized beneficial effects of physiotherapy alone in patients with severe paresis in a double-blind sham-controlled design proof of concept study. METHODS: Thirty-two chronic stroke patients with severe hand weakness were randomly assigned to 2 matched groups and participated in 17.8 ± 1.4 days of training rewarding desynchronization of ipsilesional oscillatory sensorimotor rhythms with contingent online movements of hand and arm orthoses (experimental group, n = 16). In the control group (sham group, n = 16), movements of the orthoses occurred randomly. Both groups received identical behavioral physiotherapy immediately following BMI training or the control intervention. Upper limb motor function scores, electromyography from arm and hand muscles, placebo-expectancy effects, and functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent activity were assessed before and after intervention. RESULTS: A significant group × time interaction in upper limb (combined hand and modified arm) Fugl-Meyer assessment (cFMA) motor scores was found. cFMA scores improved more in the experimental than in the control group, presenting a significant improvement of cFMA scores (3.41 ± 0.563-point difference, p = 0.018) reflecting a clinically meaningful change from no activity to some in paretic muscles. cFMA improvements in the experimental group correlated with changes in fMRI laterality index and with paretic hand electromyography activity. Placebo-expectancy scores were comparable for both groups. INTERPRETATION: The addition of BMI training to behaviorally oriented physiotherapy can be used to induce functional improvements in motor function in chronic stroke patients without residual finger movements and may open a new door in stroke neurorehabilitation.


Subject(s)
Brain-Computer Interfaces , Brain/physiology , Physical Therapy Modalities/instrumentation , Stroke Rehabilitation , Adolescent , Adult , Aged , Aged, 80 and over , Analysis of Variance , Arm/physiology , Brain/blood supply , Brain/physiopathology , Brain Waves , Case-Control Studies , Chronic Disease , Electroencephalography , Electromyography , Female , Hand/physiology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Activity/physiology , Outcome Assessment, Health Care , Retrospective Studies , Stroke/pathology , Stroke/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...