Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 118(13): 2778-2791, 2022 10 21.
Article in English | MEDLINE | ID: mdl-34718444

ABSTRACT

AIMS: Targeting vascular inflammation represents a novel therapeutic approach to reduce complications of atherosclerosis. Neutralizing the pro-inflammatory cytokine interleukin-1ß (IL-1ß) using canakinumab, a monoclonal antibody, reduces the incidence of cardiovascular events in patients after myocardial infarction (MI). The biological basis for these beneficial effects remains incompletely understood. We sought to explore the mechanisms of IL-1ß-targeted therapies. METHODS AND RESULTS: In mice with early atherosclerosis (ApoE-/- mice on a high-cholesterol diet for 6 weeks), we found that 3 weeks of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3)-inflammasome inhibition or anti-IL-1ß treatment (using either MCC950, an NLRP3-inflammasome inhibitor which blocks production and release of active IL-1ß, or a murine analogue of canakinumab) dampened accumulation of leucocytes in atherosclerotic aortas, which consequently resulted in slower progression of atherosclerosis. Causally, we found that endothelial cells from atherosclerotic aortas lowered expression of leucocyte chemoattractants and adhesion molecules upon NLRP3-inflammasome inhibition, indicating that NLRP3-inflammasome- and IL-1ß-targeted therapies reduced blood leucocyte recruitment to atherosclerotic aortas. In accord, adoptive transfer experiments revealed that anti-IL-1ß treatment mitigated blood myeloid cell uptake to atherosclerotic aortas. We further report that anti-IL-1ß treatment and NLRP3-inflammasome inhibition reduced inflammatory leucocyte supply by decreasing proliferation of bone marrow haematopoietic stem and progenitor cells, demonstrating that suppression of IL-1ß and the NLRP3-inflammasome lowered production of disease-propagating leucocytes. Using bone marrow reconstitution experiments, we observed that haematopoietic cell-specific NLRP3-inflammasome activity contributed to both enhanced recruitment and increased supply of blood inflammatory leucocytes. Further experiments that queried whether anti-IL-1ß treatment reduced vascular inflammation also in post-MI accelerated atherosclerosis documented the operation of convergent mechanisms (reduced supply and uptake of inflammatory leucocytes). In line with our pre-clinical findings, post-MI patients on canakinumab treatment showed reduced blood monocyte numbers. CONCLUSIONS: Our murine and human data reveal that anti-IL-1ß treatment and NLRP3-inflammasome inhibition dampened vascular inflammation and progression of atherosclerosis through reduced blood inflammatory leucocyte (i) supply and (ii) uptake into atherosclerotic aortas providing additional mechanistic insights into links between haematopoiesis and atherogenesis, and into the beneficial effects of NLRP3-inflammasome- and IL-1ß-targeted therapies.


Subject(s)
Atherosclerosis , Inflammasomes , Interleukin-1beta , Animals , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Chemotactic Factors/therapeutic use , Cholesterol , Endothelial Cells/metabolism , Inflammasomes/metabolism , Inflammation/drug therapy , Inflammation/prevention & control , Interleukin-1beta/metabolism , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
2.
Eur Heart J ; 42(39): 4077-4088, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34279021

ABSTRACT

AIMS: Mental stress substantially contributes to the initiation and progression of human disease, including cardiovascular conditions. We aim to investigate the underlying mechanisms of these contributions since they remain largely unclear. METHODS AND RESULTS: Here, we show in humans and mice that leucocytes deplete rapidly from the blood after a single episode of acute mental stress. Using cell-tracking experiments in animal models of acute mental stress, we found that stress exposure leads to prompt uptake of inflammatory leucocytes from the blood to distinct tissues including heart, lung, skin, and, if present, atherosclerotic plaques. Mechanistically, we found that acute stress enhances leucocyte influx into mouse atherosclerotic plaques by modulating endothelial cells. Specifically, acute stress increases adhesion molecule expression and chemokine release through locally derived norepinephrine. Either chemical or surgical disruption of norepinephrine signalling diminished stress-induced leucocyte migration into mouse atherosclerotic plaques. CONCLUSION: Our data show that acute mental stress rapidly amplifies inflammatory leucocyte expansion inside mouse atherosclerotic lesions and promotes plaque vulnerability.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Disease Models, Animal , Endothelial Cells , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Comput Struct Biotechnol J ; 19: 934-948, 2021.
Article in English | MEDLINE | ID: mdl-33598107

ABSTRACT

A growing body of research has demonstrated that targeting intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) is feasible and represents a new trending strategy in drug discovery. However, the number of inhibitors targeting IDPs/IDPRs is increasing slowly due to limitations of the methods that can be used to accelerate the discovery process. We have applied structure-based methods to successfully develop the first peptidic inhibitor (HIPe - Histone Inhibitory Peptide) that targets histone H4 that are released from NETs (Neutrophil Extracellular Traps). HIPe binds stably to the disordered N-terminal tail of histone H4, thereby preventing histone H4-induced cell death. Recently, by utilisation of the same state-of-the-art approaches, we have developed a novel peptidic inhibitor (CHIP - Cyclical Histone H2A Interference Peptide) that binds to NET-resident histone H2A, which results in a blockade of monocyte adhesion and consequently reduction in atheroprogression. Here, we present comprehensive details on the computational methods utilised to design and develop HIPe and CHIP. We have exploited protein-protein complexes as starting structures for rational peptide design and then applied binding free energy methods to predict and prioritise binding strength of the designed peptides with histone H4 and H2A. By doing this way, we have modelled only around 20 peptides and from these were able to select 4-5 peptides, from a total of more than a trillion candidate peptides, for functional characterisation in different experiments. The developed computational protocols are generic and can be widely used to design and develop novel inhibitors for other disordered proteins.

4.
Cell Mol Immunol ; 18(6): 1528-1544, 2021 06.
Article in English | MEDLINE | ID: mdl-32203195

ABSTRACT

Excessive release of neutrophil extracellular traps (NETs) is associated with disease severity and contributes to tissue injury, followed by severe organ damage. Pharmacological or genetic inhibition of NET release reduces pathology in multiple inflammatory disease models, indicating that NETs are potential therapeutic targets. Here, we demonstrate using a preclinical basket approach that our therapeutic anti-citrullinated protein antibody (tACPA) has broad therapeutic potential. Treatment with tACPA prevents disease symptoms in various mouse models with plausible NET-mediated pathology, including inflammatory arthritis (IA), pulmonary fibrosis, inflammatory bowel disease and sepsis. We show that citrulline residues in the N-termini of histones 2A and 4 are specific targets for therapeutic intervention, whereas antibodies against other N-terminal post-translational histone modifications have no therapeutic effects. Because citrullinated histones are generated during NET release, we investigated the ability of tACPA to inhibit NET formation. tACPA suppressed NET release from human neutrophils triggered with physiologically relevant human disease-related stimuli. Moreover, tACPA diminished NET release and potentially initiated NET uptake by macrophages in vivo, which was associated with reduced tissue damage in the joints of a chronic arthritis mouse model of IA. To our knowledge, we are the first to describe an antibody with NET-inhibiting properties and thereby propose tACPA as a drug candidate for NET-mediated inflammatory diseases, as it eliminates the noxious triggers that lead to continued inflammation and tissue damage in a multidimensional manner.


Subject(s)
Anti-Citrullinated Protein Antibodies/therapeutic use , Extracellular Traps/metabolism , Inflammation/drug therapy , Neutrophils/pathology , Animals , Anti-Citrullinated Protein Antibodies/pharmacology , Arthritis, Experimental/pathology , Bleomycin , Bone and Bones/pathology , Cartilage/pathology , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate , Disease Models, Animal , Disease Progression , Extracellular Traps/drug effects , Humans , Inflammation/pathology , Lipopolysaccharides , Macrophages/pathology , Male , Mice , Models, Biological , Neutrophil Infiltration , Neutrophils/drug effects , Phagocytosis , Pulmonary Fibrosis/pathology
5.
Circ Res ; 127(6): 811-823, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32546048

ABSTRACT

RATIONALE: Arterial inflammation manifested as atherosclerosis is the leading cause of mortality worldwide. Genome-wide association studies have identified a prominent role of HDAC (histone deacetylase)-9 in atherosclerosis and its clinical complications including stroke and myocardial infarction. OBJECTIVE: To determine the mechanisms linking HDAC9 to these vascular pathologies and explore its therapeutic potential for atheroprotection. METHODS AND RESULTS: We studied the effects of Hdac9 on features of plaque vulnerability using bone marrow reconstitution experiments and pharmacological targeting with a small molecule inhibitor in hyperlipidemic mice. We further used 2-photon and intravital microscopy to study endothelial activation and leukocyte-endothelial interactions. We show that hematopoietic Hdac9 deficiency reduces lesional macrophage content while increasing fibrous cap thickness thus conferring plaque stability. We demonstrate that HDAC9 binds to IKK (inhibitory kappa B kinase)-α and ß, resulting in their deacetylation and subsequent activation, which drives inflammatory responses in both macrophages and endothelial cells. Pharmacological inhibition of HDAC9 with the class IIa HDAC inhibitor TMP195 attenuates lesion formation by reducing endothelial activation and leukocyte recruitment along with limiting proinflammatory responses in macrophages. Transcriptional profiling using RNA sequencing revealed that TMP195 downregulates key inflammatory pathways consistent with inhibitory effects on IKKß. TMP195 mitigates the progression of established lesions and inhibits the infiltration of inflammatory cells. Moreover, TMP195 diminishes features of plaque vulnerability and thereby enhances plaque stability in advanced lesions. Ex vivo treatment of monocytes from patients with established atherosclerosis reduced the production of inflammatory cytokines including IL (interleukin)-1ß and IL-6. CONCLUSIONS: Our findings identify HDAC9 as a regulator of atherosclerotic plaque stability and IKK activation thus providing a mechanistic explanation for the prominence of HDAC9 as a vascular risk locus in genome-wide association studies. Its therapeutic inhibition may provide a potent lever to alleviate vascular inflammation. Graphical Abstract: A graphical abstract is available for this article.


Subject(s)
Arteries/enzymology , Atherosclerosis/enzymology , Histone Deacetylases/metabolism , I-kappa B Kinase/metabolism , Plaque, Atherosclerotic , Repressor Proteins/metabolism , Acetylation , Aged , Aged, 80 and over , Animals , Arteries/drug effects , Arteries/pathology , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/pathology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/enzymology , Endothelial Cells/pathology , Enzyme Activation , Female , Fibrosis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Humans , I-kappa B Kinase/genetics , Inflammation Mediators/metabolism , Leukocyte Rolling , Macrophages/enzymology , Macrophages/pathology , Male , Mice, Knockout, ApoE , Middle Aged , Monocytes/enzymology , Monocytes/pathology , Protein Binding , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Signal Transduction
6.
Nat Rev Cardiol ; 17(6): 327-340, 2020 06.
Article in English | MEDLINE | ID: mdl-31996800

ABSTRACT

Neutrophils have traditionally been viewed as bystanders or biomarkers of cardiovascular disease. However, studies in the past decade have demonstrated the important functions of neutrophils during cardiovascular inflammation and repair. In this Review, we discuss the influence of traditional and novel cardiovascular risk factors on neutrophil production and function. We then appraise the current knowledge of the contribution of neutrophils to the different stages of atherosclerosis, including atherogenesis, plaque destabilization and plaque erosion. In the context of cardiovascular complications of atherosclerosis, we highlight the dichotomous role of neutrophils in pathogenic and repair processes in stroke, heart failure, myocardial infarction and neointima formation. Finally, we emphasize how detailed knowledge of neutrophil functions in cardiovascular homeostasis and disease can be used to generate therapeutic strategies to target neutrophil numbers, functional status and effector mechanisms.


Subject(s)
Cardiovascular Diseases/immunology , Cardiovascular System/immunology , Inflammation/immunology , Neutrophils , Biomarkers/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/physiopathology , Cardiovascular System/pathology , Cardiovascular System/physiopathology , Humans , Inflammation/pathology , Inflammation/physiopathology , Life Style , Neutrophils/metabolism , Neutrophils/pathology , Neutrophils/physiology , Risk Factors
7.
Nature ; 569(7755): 236-240, 2019 05.
Article in English | MEDLINE | ID: mdl-31043745

ABSTRACT

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.


Subject(s)
Atherosclerosis/pathology , Cell Death , Cell Membrane/metabolism , Histones/metabolism , Inflammation/metabolism , Inflammation/pathology , Porosity , Animals , Arteries/pathology , Cell Membrane/drug effects , Disease Models, Animal , Female , Histones/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/pathology , Neutrophils/cytology , Protein Binding/drug effects
8.
PLoS One ; 11(10): e0163922, 2016.
Article in English | MEDLINE | ID: mdl-27701440

ABSTRACT

Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver.


Subject(s)
Adipose Tissue/drug effects , Extracellular Traps/drug effects , Inflammation/metabolism , Obesity/complications , Ornithine/analogs & derivatives , Adipose Tissue/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Insulin Resistance , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/metabolism , Ornithine/pharmacology
10.
PLoS One ; 10(10): e0141019, 2015.
Article in English | MEDLINE | ID: mdl-26492161

ABSTRACT

Atherosclerosis-associated diseases are the main cause of mortality and morbidity in western societies. The progression of atherosclerosis is a dynamic process evolving from early to advanced lesions that may become rupture-prone vulnerable plaques. Acute coronary syndromes are the clinical manifestation of life-threatening thrombotic events associated with high-risk vulnerable plaques. Hyperlipidemic mouse models have been extensively used in studying the mechanisms controlling initiation and progression of atherosclerosis. However, the understanding of mechanisms leading to atherosclerotic plaque destabilization has been hampered by the lack of proper animal models mimicking this process. Although various mouse models generate atherosclerotic plaques with histological features of human advanced lesions, a consensus model to study atherosclerotic plaque destabilization is still lacking. Hence, we studied the degree and features of plaque vulnerability in different mouse models of atherosclerotic plaque destabilization and find that the model based on the placement of a shear stress modifier in combination with hypercholesterolemia represent with high incidence the most human like lesions compared to the other models.


Subject(s)
Atherosclerosis/pathology , Hypercholesterolemia/pathology , Hypertension, Renovascular/pathology , Plaque, Atherosclerotic/pathology , Animals , Apolipoproteins E/genetics , Carotid Artery, Common/pathology , Carotid Artery, Common/surgery , Diet, High-Fat , Disease Models, Animal , Disease Progression , Female , Male , Mice , Mice, Knockout , Plaque, Atherosclerotic/classification , Renal Artery/pathology , Renal Artery/surgery , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...