Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Gels ; 9(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37623105

ABSTRACT

Nanostructured oxides (SiO2, TiO2) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (1O2) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Additionally, electrokinetic potential measurements were conducted. Crystallinity data and elemental analysis of the investigated systems were obtained through X-ray diffraction and X-ray fluorescence analyses, while the chemical state of the elements was determined using XPS. The engineered materials, both as simple powders and embedded in the hydrogel, were evaluated for their ability to generate reactive oxygen species (ROS) under visible and simulated solar light irradiation to establish a correlation with their antibacterial activity against Staphylococcus aureus. The generation of singlet oxygen (1O2) by the samples under visible light exposure can be of significant importance for their potential use in biomedical applications.

2.
Materials (Basel) ; 16(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37512174

ABSTRACT

Wastewater treatment targeting reuse may limit water scarcity. Photocatalysis is an advanced oxidation process that may be employed in the removal of traces of organic pollutants, where the material choice is important. Titanium dioxide (TiO2) is a highly efficient photocatalyst with good aqueous stability. TiO2 powder has a high surface area, thus allowing good pollutant adsorption, but it is difficult to filter for reuse. Thin films have a significantly lower surface area but are easier to regenerate and reuse. In this paper, we report on obtaining sol-gel TiO2 thin films on spherical beads (2 mm diameter) with high surface area and easy recovery from wastewater. The complex influence of the substrate morphology (etched up to 48 h in concentrated H2SO4), of the sol dilution with ethanol (1:0 or 1:1), and the number of layers (1 or 2) on the structure, morphology, chemical composition, and photocatalytic performance of the TiO2 thin films is investigated. Etching the substrate for 2 h in H2SO4 leads to uniform, smooth surfaces on which crystalline, homogeneous TiO2 thin films are grown. Films deposited using an undiluted sol are stable in water, with some surface reorganization of the TiO2 aggregates occurring, while the films obtained using diluted sol are partially washed out. By increasing the film thickness through the deposition of a second layer, the roughness increases (from ~50 nm to ~100 nm), but this increase is not high enough to promote higher adsorption or overall photocatalytic efficiency in methylene blue photodegradation (both about 40% after 8 h of UV-Vis irradiation at 55 W/m2). The most promising thin film, deposited on spherical bead substrates (etched for 2 h in H2SO4) using the undiluted sol, with one layer, is highly crystalline, uniform, water-stable, and proves to have good photocatalytic activity.

3.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36978939

ABSTRACT

ZnSe, ZnSe-TiO2 microspheres and nanostructured TiO2 obtained by hydrothermal and sol-gel methods were tested against Staphylococcus aureus ATCC 25923 and Micrococcus lysodeikticus ATCC 4698 before and after lysozyme (Lys) loading. Morphological characterization of inorganic matrices and hybrid organic-inorganic complexes were performed by microscopy techniques (SEM, AFM and Dark Field Hyperspectral Microscopy). Light absorption properties of ZnSe, ZnSe-TiO2 and TiO2 powders were assessed by UV-visible spectroscopy and their ability to generate reactive oxygen species (•OH and O2•-) under visible light irradiation was investigated. Antibacterial activity of ZnSe, ZnSe-TiO2, TiO2, Lys/ZnSe, Lys/ZnSe-TiO2 and Lys/TiO2 samples under exposure to visible light irradiation (λ > 420 nm) was tested against Staphylococcus aureus and Micrococcus lysodeikticus and correlated with ROS photogeneration.

4.
Gels ; 8(12)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36547335

ABSTRACT

In this paper, we conducted a fundamental study concerning the effect of thermal treatment on the structure and morphology of 2 mol% vanadium doped ZnO nanopowders obtained by microwave assisted sol-gel method (MW). The samples were analyzed by DTA, FTIR, XRD, SEM, and UV-Vis spectroscopy. The DTA results showed that above 500 °C, there was no mass loss in the TG curves, and ZnO crystallization occurred. The XRD patterns of the thermally treated powders at 500 °C and 650 °C showed the crystallization of ZnO (zincite) belonging to the wurtzite-type structure. It was found that in the 650 °C thermally treated powder, aside from ZnO, traces of Zn3(VO4)2 existed. FTIR spectra of the annealed samples confirmed the formation of the ZnO crystalline phase and V-O bands. The micrographs revealed that the temperature influenced the morphology. The increase in the annealing temperature led to the grain growth. The SEM images of the MW powder thermally treated at 650 °C showed two types of grains: hexagonal grains and cylindrical nanorods. UV-Vis spectra showed that the absorption band also increased with the increasing temperature of thermal treatment. The MW sample annealed at 650 °C had the highest absorption in ultraviolet domain.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144974

ABSTRACT

This work presents the synthesis of nanostructured TiO2 modified with noble metal nanoparticles (Au, Ag) and lysozyme and coated on titanium foil. Moreover, the specific structural and functional properties of the resulting inorganic and hybrid materials were explored. The purpose of this study was to identify the key parameters for developing engineered coatings on titanium foil appropriate for efficient dental implants with intrinsic antibacterial activity. TiO2 nanoparticles obtained using the sol-gel method were deposited on Ti foil and modified with Au/Ag nanoparticles. Morphological and structural investigations (scanning electron and atomic force microscopies, X-ray diffraction, photoluminescence, and UV-Vis spectroscopies) were carried out for the characterization of the resulting inorganic coatings. In order to modify their antibacterial activity, which is essential for safe dental implants, the following aspects were investigated: (a) singlet oxygen (1O2) generation by inorganic coatings exposed to visible light irradiation; (b) the antibacterial behavior emphasized by titania-based coatings deposited on titanium foil (TiO2/Ti foil; Au-TiO2/Ti foil, Ag-TiO2/Ti foil); (c) the lysozyme bioactivity on the microbial substrate (Micrococcus lysodeicticus) after its adsorption on inorganic surfaces (Lys/TiO2/Ti foil; Lys/Au-TiO2/Ti foil, Lys/Ag-TiO2/Ti foil); (d) the enzymatic activity of the above-mentioned hybrids materials for the hydrolysis reaction of a synthetic organic substrate usually used for monitoring the lysozyme biocatalytic activity, namely, 4-Methylumbelliferyl ß-D-N,N',N″-triacetylchitotrioside [4-MU-ß- (GlcNAc)3]. This was evaluated by identifying the presence of a fluorescent reaction product, 7-hydroxy-4-metyl coumarin (4-methylumbelliferone).

6.
Gels ; 8(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36005099

ABSTRACT

The effect of gel preparation and heat treatment on the structural and optical properties of SiO2-ZnO materials prepared by the sol-gel method was investigated. Zinc acetate dehydrate, TEOS (tetraethylortosilicate), ethanol, distillated water and HCl were used as a starting material, solvent and catalyst, respectively. Four powders (G1-G4) were prepared in different ways from the starting materials mentioned above. The method of adding Zn precursors during the synthesis differed from one another. For the G1 synthesis, only Zn acetate powder was employed; for the G2 synthesis, Zn acetate was dissolved in distilled water; and for the G3 synthesis, Zn acetate was dissolved in ethanol. When synthesizing G4, TEOS was added last, after Zn acetate had been combined with water and ethanol. The SiO2-ZnO materials were dried at 200 °C and then heat-treated at 700 °C and 900 °C. All samples were investigated by X-ray diffraction and infrared spectroscopy in order to investigate their structure. SEM measurements were performed to investigate the morphology of materials. Optical properties were influenced by gel preparation and heat treatments. A reflectance of over 60% was obtained for G3 and G4 powders, while for G1 and G2, the reflectance was below 30%. In conclusion, synthesis steps and heat treatment can control the structure and properties of the powders.

7.
Int J Biol Macromol ; 211: 410-424, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35569685

ABSTRACT

A facile, green synthesis methodology to obtain zinc oxide nanoparticles using three polysaccharide gums (Acacia gum, Guar gum and Xanthan gum) of biological origin was developed. Subsequently, biosynthesized zinc oxide nanoparticles were incorporated into a sustainable chitosan hydrogel matrix functionalized with propolis extract. This study has revealed that the selected polysaccharides as chelates represents a suitable approach to synthesize ZnO nanoparticles of particular interest with controlled morphology. The formation of ZnO nanoparticles using polysaccharide gums was confirmed by FTIR, XRD, UV-Vis spectroscopy, thermal analysis, SEM, Raman and photoluminescence spectroscopies. The rheological behaviour of obtained hydrogels was evaluated. The AFM studies demonstrate that all synthesized chitosan incorporated ZnO composites hydrogels functionalized with propolis extract exhibit corrugated topographies. The present study highlights the possible incorporation of various guest molecules into hydrogel matrix due to its tuneable morphologies. The obtained hydrogel composites were cytocompatible in L929 fibroblast cell culture, in a range of concentrations between 50 and 1000 µg/mL, as assessed by MTT, LDH and Live/Dead double staining assays. By enhancing the biological properties, these novel green hydrogels show attractive superior performance in a wide concentration range to develop future in vivo suitable natural platforms as effective delivery systems of pharmacologic agents for biomedical applications.


Subject(s)
Chitosan , Propolis , Zinc Oxide , Biocompatible Materials , Chitosan/chemistry , Hydrogels/chemistry , Plant Extracts/chemistry , Polysaccharides/pharmacology , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL