Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Am J Epidemiol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907309

ABSTRACT

Alzheimer's disease and related dementias (ADRD) present a growing public health burden in the United States. One actionable risk factor for ADRD is air pollution: multiple studies have found associations between air pollution and exacerbation of ADRD. Our study builds on previous studies by applying modern statistical causal inference methodologies-generalized propensity score (GPS) weighting and matching-on a large, longitudinal dataset. We follow 50 million Medicare enrollees to investigate impacts of three air pollutants-fine particular matter (PM${}_{2.5}$), nitrogen dioxide (NO${}_2$), and summer ozone (O${}_3$)-on elderly patients' rate of first hospitalization with ADRD diagnosis. Similar to previous studies using traditional statistical models, our results found increased hospitalization risks due to increased PM${}_{2.5}$ and NO${}_2$ exposure, with less conclusive results for O${}_3$. In particular, our GPS weighting analysis finds IQR increases in PM${}_{2.5}$, NO${}_2$, or O${}_3$ exposure results in hazard ratios of 1.108 (95% CI: 1.097-1.119), 1.058 (1.049-1.067), or 1.045 (1.036-1.054), respectively. GPS matching results are similar for PM${}_{2.5}$ and NO${}_2$ with attenuated effects for O${}_3$. Our results strengthen arguments that long-term PM${}_{2.5}$ and NO${}_2$ exposure increases risk of hospitalization with ADRD diagnosis. Additionally, we highlight strengths and limitations of causal inference methodologies in observational studies with continuous treatments. Keywords: Alzheimer's disease and related dementias, air pollution, Medicare, causal inference, generalized propensity score.

2.
Biometrics ; 80(2)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38819314

ABSTRACT

The five discussions of our paper provide several modeling alternatives, extensions, and generalizations that can potentially guide future research in meta-analysis. In this rejoinder, we briefly summarize and comment on some of those points.


Subject(s)
Meta-Analysis as Topic , Neoplasms , Penetrance , Humans , Neoplasms/epidemiology , Models, Statistical , Risk Assessment/statistics & numerical data , Genetic Predisposition to Disease
3.
Biometrics ; 80(2)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38819308

ABSTRACT

Multi-gene panel testing allows many cancer susceptibility genes to be tested quickly at a lower cost making such testing accessible to a broader population. Thus, more patients carrying pathogenic germline mutations in various cancer-susceptibility genes are being identified. This creates a great opportunity, as well as an urgent need, to counsel these patients about appropriate risk-reducing management strategies. Counseling hinges on accurate estimates of age-specific risks of developing various cancers associated with mutations in a specific gene, ie, penetrance estimation. We propose a meta-analysis approach based on a Bayesian hierarchical random-effects model to obtain penetrance estimates by integrating studies reporting different types of risk measures (eg, penetrance, relative risk, odds ratio) while accounting for the associated uncertainties. After estimating posterior distributions of the parameters via a Markov chain Monte Carlo algorithm, we estimate penetrance and credible intervals. We investigate the proposed method and compare with an existing approach via simulations based on studies reporting risks for two moderate-risk breast cancer susceptibility genes, ATM and PALB2. Our proposed method is far superior in terms of coverage probability of credible intervals and mean square error of estimates. Finally, we apply our method to estimate the penetrance of breast cancer among carriers of pathogenic mutations in the ATM gene.


Subject(s)
Bayes Theorem , Genetic Predisposition to Disease , Penetrance , Humans , Genetic Predisposition to Disease/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/genetics , Female , Fanconi Anemia Complementation Group N Protein/genetics , Computer Simulation , Markov Chains , Neoplasms/genetics , Neoplasms/epidemiology , Tumor Suppressor Proteins/genetics , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Monte Carlo Method , Meta-Analysis as Topic , Germ-Line Mutation , Models, Statistical
4.
Environ Int ; 188: 108739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754245

ABSTRACT

INTRODUCTION: Protective associations of greenspace with Parkinson's disease (PD) have been observed in some studies. Visual exposure to greenspace seems to be important for some of the proposed pathways underlying these associations. However, most studies use overhead-view measures (e.g., satellite imagery, land-classification data) that do not capture street-view greenspace and cannot distinguish between specific greenspace types. We aimed to evaluate associations of street-view greenspace measures with hospitalizations with a PD diagnosis code (PD-involved hospitalization). METHODS: We created an open cohort of about 45.6 million Medicare fee-for-service beneficiaries aged 65 + years living in core based statistical areas (i.e. non-rural areas) in the contiguous US (2007-2016). We obtained 350 million Google Street View images across the US and applied deep learning algorithms to identify percentages of specific greenspace features in each image, including trees, grass, and other green features (i.e., plants, flowers, fields). We assessed yearly average street-view greenspace features for each ZIP code. A Cox-equivalent re-parameterized Poisson model adjusted for potential confounders (i.e. age, race/ethnicity, socioeconomic status) was used to evaluate associations with first PD-involved hospitalization. RESULTS: There were 506,899 first PD-involved hospitalizations over 254,917,192 person-years of follow-up. We found a hazard ratio (95% confidence interval) of 0.96 (0.95, 0.96) per interquartile range (IQR) increase for trees and a HR of 0.97 (0.96, 0.97) per IQR increase for other green features. In contrast, we found a HR of 1.06 (1.04, 1.07) per IQR increase for grass. Associations of trees were generally stronger for low-income (i.e. Medicaid eligible) individuals, Black individuals, and in areas with a lower median household income and a higher population density. CONCLUSION: Increasing exposure to trees and other green features may reduce PD-involved hospitalizations, while increasing exposure to grass may increase hospitalizations. The protective associations may be stronger for marginalized individuals and individuals living in densely populated areas.


Subject(s)
Hospitalization , Medicare , Parkinson Disease , Humans , United States , Aged , Parkinson Disease/epidemiology , Medicare/statistics & numerical data , Hospitalization/statistics & numerical data , Male , Female , Cohort Studies , Aged, 80 and over
5.
Genet Epidemiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654400

ABSTRACT

Multigene panel testing now allows efficient testing of many cancer susceptibility genes leading to a larger number of mutation carriers being identified. They need to be counseled about their cancer risk conferred by the specific gene mutation. An important cancer susceptibility gene is PALB2. Multiple studies reported risk estimates for breast cancer (BC) conferred by pathogenic variants in PALB2. Due to the diverse modalities of reported risk estimates (age-specific risk, odds ratio, relative risk, and standardized incidence ratio) and effect sizes, a meta-analysis combining these estimates is necessary to accurately counsel patients with this mutation. However, this is not trivial due to heterogeneity of studies in terms of study design and risk measure. We utilized a recently proposed Bayesian random-effects meta-analysis method that can synthesize estimates from such heterogeneous studies. We applied this method to combine estimates from 12 studies on BC risk for carriers of pathogenic PALB2 mutations. The estimated overall (meta-analysis-based) risk of BC is 12.80% (6.11%-22.59%) by age 50 and 48.47% (36.05%-61.74%) by age 80. Pathogenic mutations in PALB2 makes women more susceptible to BC. Our risk estimates can help clinically manage patients carrying pathogenic variants in PALB2.

6.
J Am Stat Assoc ; 119(545): 757-772, 2024.
Article in English | MEDLINE | ID: mdl-38524247

ABSTRACT

In the context of a binary treatment, matching is a well-established approach in causal inference. However, in the context of a continuous treatment or exposure, matching is still underdeveloped. We propose an innovative matching approach to estimate an average causal exposure-response function under the setting of continuous exposures that relies on the generalized propensity score (GPS). Our approach maintains the following attractive features of matching: a) clear separation between the design and the analysis; b) robustness to model misspecification or to the presence of extreme values of the estimated GPS; c) straightforward assessments of covariate balance. We first introduce an assumption of identifiability, called local weak unconfoundedness. Under this assumption and mild smoothness conditions, we provide theoretical guarantees that our proposed matching estimator attains point-wise consistency and asymptotic normality. In simulations, our proposed matching approach outperforms existing methods under settings with model misspecification or in the presence of extreme values of the estimated GPS. We apply our proposed method to estimate the average causal exposure-response function between long-term PM2.5 exposure and all-cause mortality among 68.5 million Medicare enrollees, 2000-2016. We found strong evidence of a harmful effect of long-term PM2.5 exposure on mortality. Code for the proposed matching approach is provided in the CausalGPS R package, which is available on CRAN and provides a computationally efficient implementation.

7.
Proc Natl Acad Sci U S A ; 121(8): e2306729121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38349877

ABSTRACT

Wildfires have become more frequent and intense due to climate change and outdoor wildfire fine particulate matter (PM2.5) concentrations differ from relatively smoothly varying total PM2.5. Thus, we introduced a conceptual model for computing long-term wildfire PM2.5 and assessed disproportionate exposures among marginalized communities. We used monitoring data and statistical techniques to characterize annual wildfire PM2.5 exposure based on intermittent and extreme daily wildfire PM2.5 concentrations in California census tracts (2006 to 2020). Metrics included: 1) weeks with wildfire PM2.5 < 5 µg/m3; 2) days with non-zero wildfire PM2.5; 3) mean wildfire PM2.5 during peak exposure week; 4) smoke waves (≥2 consecutive days with <15 µg/m3 wildfire PM2.5); and 5) mean annual wildfire PM2.5 concentration. We classified tracts by their racial/ethnic composition and CalEnviroScreen (CES) score, an environmental and social vulnerability composite measure. We examined associations of CES and racial/ethnic composition with the wildfire PM2.5 metrics using mixed-effects models. Averaged 2006 to 2020, we detected little difference in exposure by CES score or racial/ethnic composition, except for non-Hispanic American Indian and Alaska Native populations, where a 1-SD increase was associated with higher exposure for 4/5 metrics. CES or racial/ethnic × year interaction term models revealed exposure disparities in some years. Compared to their California-wide representation, the exposed populations of non-Hispanic American Indian and Alaska Native (1.68×, 95% CI: 1.01 to 2.81), white (1.13×, 95% CI: 0.99 to 1.32), and multiracial (1.06×, 95% CI: 0.97 to 1.23) people were over-represented from 2006 to 2020. In conclusion, during our study period in California, we detected disproportionate long-term wildfire PM2.5 exposure for several racial/ethnic groups.


Subject(s)
Air Pollutants , Wildfires , Humans , Particulate Matter/adverse effects , Smoke/adverse effects , California , Racial Groups , Environmental Exposure , Air Pollutants/adverse effects
8.
medRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-37398422

ABSTRACT

Background: Pathogenic variants in cancer susceptibility genes can now be tested efficiently and economically with the wide availability of multi-gene panel testing. This has resulted in an unprecedented rate of identifying individuals carrying pathogenic variants. These carriers need to be counselled about their future cancer risk conferred by the specific gene mutation. An important cancer susceptibility gene is PALB2. Several studies reported risk estimates for breast cancer (BC) associated with pathogenic variants in PALB2. Because of the variety of modalities (age specific risk, odds ratio, relative risk, and standardized incidence ratio) and effect sizes of these risk estimates, a meta-analysis of all of these estimates of BC risk is necessary to provide accurate counseling of patients with pathogenic variants in PALB2. The challenge, though, in combining these estimates is the heterogeneity of studies in terms of study design and risk measure. Methods: We utilized a recently proposed novel Bayesian random-effects meta-analysis method that can synthesize and combine information from such heterogeneous studies. We applied this method to combine estimates from twelve different studies on BC risk for carriers of pathogenic PALB2 mutations, out of which two report age-specific penetrance, one reports relative risk, and nine report odds ratios. Results: The estimated overall (meta-analysis based) risk of BC is 12.80% by age 50 (6.11%- 22.59%) and 48.47% by age 80 (36.05%-61.74%). Conclusion: Pathogenic mutations in PALB2 makes women more susceptible to BC. Our risk estimates can help clinically manage patients carrying pathogenic variants in PALB2.

9.
Environ Health Perspect ; 131(12): 127003, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039140

ABSTRACT

BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5-µg/m3 increase in PM2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.


Subject(s)
Air Pollutants , Air Pollution , Humans , Aged , Air Pollutants/analysis , Environmental Exposure/analysis , National Health Programs , Air Pollution/analysis , Particulate Matter/analysis , Europe/epidemiology , Cohort Studies , Canada/epidemiology
10.
Environ Epidemiol ; 7(4): e261, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37545812

ABSTRACT

Outdoor air temperature is associated with increased morbidity and mortality. Other thermal indices theoretically confer greater physiological relevance by incorporating additional meteorological variables. However, the optimal metric for predicting excess deaths or hospitalizations owing to extreme heat among US Medicare beneficiaries remains unknown. Methods: We calculated daily maximum, minimum, and mean outdoor air temperature (T), heat index (HI), wet-bulb globe temperature (WBGT), and Universal Thermal Climate Index (UTCI) for populous US counties and linked estimates with daily all-cause mortality and heat-related hospitalizations among Medicare beneficiaries (2006-2016). We fit distributed-lag nonlinear models for each metric and compared relative risks (RRs) at the 99th percentile. Results: Across all heat metrics, extreme heat was statistically significantly associated with elevated risks of morbidity and mortality. Associations were more pronounced for maximum daily values versus the corresponding minimum for the same metric. The starkest example was between HImax (RR = 1.14; 95% confidence interval [CI] = 1.12, 1.15) and HImin (RR = 1.10; 95% CI = 1.09, 1.11) for hospitalizations. When comparing RRs across heat metrics, we found no statistically significant differences within the minimum and maximum heat values (i.e., no significant differences between Tmax/HImax/WBGTmax/UTCImax or between Tmin/HImin/WBGTmin/UTCImin). We found similar relationships across the National Climate Assessment regions. Conclusion: Among Medicare beneficiaries in populous US counties, daily maximum and mean values of outdoor heat are associated with greater RRs of heat-related morbidity and all-cause mortality versus minimum values of the same metric. The choice of heat metric (e.g., temperature versus HI) does not appear to substantively affect risk calculations in this population.

11.
PLOS Glob Public Health ; 3(8): e0002178, 2023.
Article in English | MEDLINE | ID: mdl-37531330

ABSTRACT

Imposing stricter regulations for PM2.5 has the potential to mitigate damaging health and climate change effects. Recent evidence establishing a link between exposure to air pollution and COVID-19 outcomes is one of many arguments for the need to reduce the National Ambient Air Quality Standards (NAAQS) for PM2.5. However, many studies reporting a relationship between COVID-19 outcomes and PM2.5 have been criticized because they are based on ecological regression analyses, where area-level counts of COVID-19 outcomes are regressed on area-level exposure to air pollution and other covariates. It is well known that regression models solely based on area-level data are subject to ecological bias, i.e., they may provide a biased estimate of the association at the individual-level, due to within-area variability of the data. In this paper, we augment county-level COVID-19 mortality data with a nationally representative sample of individual-level covariate information from the American Community Survey along with high-resolution estimates of PM2.5 concentrations obtained from a validated model and aggregated to the census tract for the contiguous United States. We apply a Bayesian hierarchical modeling approach to combine county-, census tract-, and individual-level data to ultimately draw inference about individual-level associations between long-term exposure to PM2.5 and mortality for COVID-19. By analyzing data prior to the Emergency Use Authorization for the COVID-19 vaccines we found that an increase of 1 µg/m3 in long-term PM2.5 exposure, averaged over the 17-year period 2000-2016, is associated with a 3.3% (95% credible interval, 2.8 to 3.8%) increase in an individual's odds of COVID-19 mortality. Code to reproduce our study is publicly available at https://github.com/NSAPH/PM_COVID_ecoinference. The results confirm previous evidence of an association between long-term exposure to PM2.5 and COVID-19 mortality and strengthen the case for tighter regulations on harmful air pollution and greenhouse gas emissions.

12.
J Agric Biol Environ Stat ; 28(1): 20-41, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37063643

ABSTRACT

Numerous studies have examined the associations between long-term exposure to fine particulate matter (PM2.5) and adverse health outcomes. Recently, many of these studies have begun to employ high-resolution predicted PM2.5 concentrations, which are subject to measurement error. Previous approaches for exposure measurement error correction have either been applied in non-causal settings or have only considered a categorical exposure. Moreover, most procedures have failed to account for uncertainty induced by error correction when fitting an exposure-response function (ERF). To remedy these deficiencies, we develop a multiple imputation framework that combines regression calibration and Bayesian techniques to estimate a causal ERF. We demonstrate how the output of the measurement error correction steps can be seamlessly integrated into a Bayesian additive regression trees (BART) estimator of the causal ERF. We also demonstrate how locally-weighted smoothing of the posterior samples from BART can be used to create a more accurate ERF estimate. Our proposed approach also properly propagates the exposure measurement error uncertainty to yield accurate standard error estimates. We assess the robustness of our proposed approach in an extensive simulation study. We then apply our methodology to estimate the effects of PM2.5 on all-cause mortality among Medicare enrollees in New England from 2000-2012.

13.
Genet Med ; 25(7): 100837, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37057674

ABSTRACT

PURPOSE: The aim of this study was to describe the clinical impact of commercial laboratories issuing conflicting classifications of genetic variants. METHODS: Results from 2000 patients undergoing a multigene hereditary cancer panel by a single laboratory were analyzed. Clinically significant discrepancies between the laboratory-provided test reports and other major commercial laboratories were identified, including differences between pathogenic/likely pathogenic and variant of uncertain significance (VUS) classifications, via review of ClinVar archives. For patients carrying a VUS, clinical documentation was assessed for evidence of provider awareness of the conflict. RESULTS: Fifty of 975 (5.1%) patients with non-negative results carried a variant with a clinically significant conflict, 19 with a pathogenic/likely pathogenic variant reported in APC or MUTYH, and 31 with a VUS reported in CDKN2A, CHEK2, MLH1, MSH2, MUTYH, RAD51C, or TP53. Only 10 of 28 (36%) patients with a VUS with a clinically significant conflict had a documented discussion by a provider about the conflict. Discrepant counseling strategies were used for different patients with the same variant. Among patients with a CDKN2A variant or a monoallelic MUTYH variant, providers were significantly more likely to make recommendations based on the laboratory-reported classification. CONCLUSION: Our findings highlight the frequency of variant interpretation discrepancies and importance of clinician awareness. Guidance is needed on managing patients with discrepant variants to support accurate risk assessment.


Subject(s)
Genetic Variation , Neoplasms , Humans , Neoplasms/genetics , Laboratories , Genetic Testing/methods , Genetic Predisposition to Disease
14.
Environ Health Perspect ; 131(4): 47008, 2023 04.
Article in English | MEDLINE | ID: mdl-37036790

ABSTRACT

BACKGROUND: Recent studies have reported the association between air pollution exposure and reduced kidney function. However, it is unclear whether air pollution is associated with an increased risk of acute kidney injury (AKI). OBJECTIVES: To address this gap in knowledge, we investigated the effect estimates of long-term exposures to fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)], nitrogen dioxide (NO2), and ozone (O3) on the risk of first hospital admission for AKI using nationwide Medicare data. METHODS: This nationwide population-based longitudinal cohort study included 61,300,754 beneficiaries enrolled in Medicare Part A fee-for-service (FFS) who were ≥65 years of age and resided in the continental United States from the years 2000 through 2016. We applied Cox-equivalent Poisson models to estimate the association between air pollution and first hospital admission for AKI. RESULTS: Exposure to PM2.5, NO2, and O3 was associated with increased risk for first hospital admission for AKI, with hazard ratios (HRs) of 1.17 (95% CI: 1.16, 1.19) for a 5-µg/m3 increase in PM2.5, 1.12 (95% CI: 1.11, 1.13) for a 10-ppb increase in NO2, and 1.03 (95% CI: 1.02, 1.04) for a 10-ppb increase in summer-period O3 (June to September). The associations persisted at annual exposures lower than the current National Ambient Air Quality Standard. DISCUSSION: This study found an association between exposures to air pollution and the risk of the first hospital admission with AKI, and this association persisted even at low concentrations of air pollution. Our findings provide beneficial implications for public health policies and air pollution guidelines to alleviate health care expenditures and the disease burden attributable to AKI. https://doi.org/10.1289/EHP10729.


Subject(s)
Acute Kidney Injury , Air Pollutants , Air Pollution , Humans , Aged , United States/epidemiology , Longitudinal Studies , Air Pollutants/analysis , Medicare , Air Pollution/adverse effects , Air Pollution/analysis , Cohort Studies , Particulate Matter/analysis , Nitrogen Dioxide/analysis , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Environmental Exposure/adverse effects
15.
bioRxiv ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945459

ABSTRACT

Many pathogenic sequence variants (PSVs) have been associated with increased risk of cancers. Mendelian risk prediction models use Mendelian laws of inheritance to predict the probability of having a PSV based on family history, as well as specified PSV frequency and penetrance (agespecific probability of developing cancer given genotype). Most existing models assume penetrance is the same for any PSVs in a certain gene. However, for some genes (for example, BRCA1/2), cancer risk does vary by PSV. We propose an extension of Mendelian risk prediction models to relax the assumption that risk is the same for any PSVs in a certain gene by incorporating variant-specific penetrances and illustrating these extensions on two existing Mendelian risk prediction models, BRCAPRO and PanelPRO. Our proposed BRCAPRO-variant and PanelPRO-variant models incorporate variant-specific BRCA1/2 PSVs through the region classifications. Due to the sparsity of the variant information we classify BRCA1/2 PSVs into three regions; the breast cancer clustering region (BCCR), the ovarian cancer clustering region (OCCR), and an other region. Simulations were conducted to evaluate the performance of the proposed BRCAPRO-variant model compared to the existing BRCAPRO model which assumes the penetrance is the same for any PSVs in BRCA1 (and respectively BRCA2). Simulation results showed that the BRCAPRO-variant model was well calibrated to predict region-specific BRCA1/2 carrier status with high discrimination and accuracy on the region-specific level. In addition, we showed that the BRCAPRO-variant model achieved performance gains over the existing risk prediction models in terms of calibration without loss in discrimination and accuracy. We also evaluated the performance of the two proposed models, BRCAPRO-variant and PanelPRO-variant, on a cohort of 1,961 families from the Cancer Genetics Network (CGN). We showed that our proposed models provide region-specific PSV carrier probabilities with high accuracy, while the calibration, discrimination and accuracy of gene-specific PSV carrier probabilities were comparable to the existing gene-specific models. As more variant-specific PSV penetrances become available, we have shown that Mendelian risk prediction models can be extended to integrate the additional information, providing precise variant or region-specific PSV carrier probabilities and improving future cancer risk predictions.

16.
N Engl J Med ; 388(15): 1396-1404, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36961127

ABSTRACT

BACKGROUND: Black Americans are exposed to higher annual levels of air pollution containing fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) than White Americans and may be more susceptible to its health effects. Low-income Americans may also be more susceptible to PM2.5 pollution than high-income Americans. Because information is lacking on exposure-response curves for PM2.5 exposure and mortality among marginalized subpopulations categorized according to both race and socioeconomic position, the Environmental Protection Agency lacks important evidence to inform its regulatory rulemaking for PM2.5 standards. METHODS: We analyzed 623 million person-years of Medicare data from 73 million persons 65 years of age or older from 2000 through 2016 to estimate associations between annual PM2.5 exposure and mortality in subpopulations defined simultaneously by racial identity (Black vs. White) and income level (Medicaid eligible vs. ineligible). RESULTS: Lower PM2.5 exposure was associated with lower mortality in the full population, but marginalized subpopulations appeared to benefit more as PM2.5 levels decreased. For example, the hazard ratio associated with decreasing PM2.5 from 12 µg per cubic meter to 8 µg per cubic meter for the White higher-income subpopulation was 0.963 (95% confidence interval [CI], 0.955 to 0.970), whereas equivalent hazard ratios for marginalized subpopulations were lower: 0.931 (95% CI, 0.909 to 0.953) for the Black higher-income subpopulation, 0.940 (95% CI, 0.931 to 0.948) for the White low-income subpopulation, and 0.939 (95% CI, 0.921 to 0.957) for the Black low-income subpopulation. CONCLUSIONS: Higher-income Black persons, low-income White persons, and low-income Black persons may benefit more from lower PM2.5 levels than higher-income White persons. These findings underscore the importance of considering racial identity and income together when assessing health inequities. (Funded by the National Institutes of Health and the Alfred P. Sloan Foundation.).


Subject(s)
Air Pollution , Disease Susceptibility , Health Inequities , Particulate Matter , Racial Groups , Socioeconomic Factors , Aged , Humans , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollution/statistics & numerical data , Black or African American/statistics & numerical data , Disease Susceptibility/economics , Disease Susceptibility/epidemiology , Disease Susceptibility/ethnology , Disease Susceptibility/mortality , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Medicare/statistics & numerical data , Particulate Matter/adverse effects , Particulate Matter/analysis , Poverty/statistics & numerical data , Race Factors/statistics & numerical data , Racial Groups/statistics & numerical data , Social Class , United States/epidemiology , White/statistics & numerical data
17.
Cancers (Basel) ; 15(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36831433

ABSTRACT

Accurate risk stratification is key to reducing cancer morbidity through targeted screening and preventative interventions. Multiple breast cancer risk prediction models are used in clinical practice, and often provide a range of different predictions for the same patient. Integrating information from different models may improve the accuracy of predictions, which would be valuable for both clinicians and patients. BRCAPRO is a widely used model that predicts breast cancer risk based on detailed family history information. A major limitation of this model is that it does not consider non-genetic risk factors. To address this limitation, we expand BRCAPRO by combining it with another popular existing model, BCRAT (i.e., Gail), which uses a largely complementary set of risk factors, most of them non-genetic. We consider two approaches for combining BRCAPRO and BCRAT: (1) modifying the penetrance (age-specific probability of developing cancer given genotype) functions in BRCAPRO using relative hazard estimates from BCRAT, and (2) training an ensemble model that takes BRCAPRO and BCRAT predictions as input. Using both simulated data and data from Newton-Wellesley Hospital and the Cancer Genetics Network, we show that the combination models are able to achieve performance gains over both BRCAPRO and BCRAT. In the Cancer Genetics Network cohort, we show that the proposed BRCAPRO + BCRAT penetrance modification model performs comparably to IBIS, an existing model that combines detailed family history with non-genetic risk factors.

18.
Environ Int ; 173: 107844, 2023 03.
Article in English | MEDLINE | ID: mdl-36841189

ABSTRACT

BACKGROUND: Recent studies have identified the association of environmental stressors with reduced kidney function and the development of kidney disease. While residential greenness has been linked to many health benefits, the association between residential greenness and the development of kidney disease is not clear. We aimed to investigate the association between residential greenness and the development of kidney disease. METHODS: We performed a longitudinal population-based cohort study including all fee-for-service Medicare Part A beneficiaries (aged 65 years or older) in Massachusetts (2000-2016). We assessed greenness with the annual average Enhanced Vegetation Index (EVI) based on residential ZIP codes of beneficiaries. We applied Cox-equivalent Poisson models to estimate the association between EVI and first hospital admission for total kidney disease, chronic kidney disease (CKD), and acute kidney injury (AKI), separately. RESULTS: Data for 1,462,949 beneficiaries who resided in a total of 644 ZIP codes were analyzed. The total person-years of follow-up for total kidney disease, CKD, and AKI were 9.8, 10.9, and 10.8 million person-years, respectively. For a 0.1 increase in annual EVI, the hazard ratios (HRs) were 0.95 (95% CI: 0.93 to 0.97) for the first hospital admission for total kidney disease, and the association was more prominent for AKI (HR: 0.94 with 95% CI: 0.92 to 0.97) than CKD (HR: 0.98 with 95% CI: 0.95-1.01]). The estimated effects of EVI on kidney disease were generally more evident in White beneficiaries and those residing in metropolitan areas compared to the overall population. CONCLUSIONS: This study found that higher levels of annual residential greenness were associated with a lower risk of the first hospital admission for kidney diseases. Results are consistent with the hypothesis that higher residential greenness benefits kidney patients.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Humans , Aged , United States/epidemiology , Cohort Studies , Longitudinal Studies , Medicare , Massachusetts/epidemiology , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Acute Kidney Injury/epidemiology
19.
Biostatistics ; 25(1): 57-79, 2023 12 15.
Article in English | MEDLINE | ID: mdl-36815555

ABSTRACT

The methodological development of this article is motivated by the need to address the following scientific question: does the issuance of heat alerts prevent adverse health effects? Our goal is to address this question within a causal inference framework in the context of time series data. A key challenge is that causal inference methods require the overlap assumption to hold: each unit (i.e., a day) must have a positive probability of receiving the treatment (i.e., issuing a heat alert on that day). In our motivating example, the overlap assumption is often violated: the probability of issuing a heat alert on a cooler day is near zero. To overcome this challenge, we propose a stochastic intervention for time series data which is implemented via an incremental time-varying propensity score (ItvPS). The ItvPS intervention is executed by multiplying the probability of issuing a heat alert on day $t$-conditional on past information up to day $t$-by an odds ratio $\delta_t$. First, we introduce a new class of causal estimands, which relies on the ItvPS intervention. We provide theoretical results to show that these causal estimands can be identified and estimated under a weaker version of the overlap assumption. Second, we propose nonparametric estimators based on the ItvPS and derive an upper bound for the variances of these estimators. Third, we extend this framework to multisite time series using a spatial meta-analysis approach. Fourth, we show that the proposed estimators perform well in terms of bias and root mean squared error via simulations. Finally, we apply our proposed approach to estimate the causal effects of increasing the probability of issuing heat alerts on each warm-season day in reducing deaths and hospitalizations among Medicare enrollees in 2837 US counties.


Subject(s)
Hot Temperature , Medicare , Aged , Humans , United States , Time Factors , Propensity Score , Hospitalization
20.
Environ Sci Technol ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36623253

ABSTRACT

U.S. Environmental Protection Agency (EPA) air quality (AQ) monitors, the "gold standard" for measuring air pollutants, are sparsely positioned across the U.S. Low-cost sensors (LCS) are increasingly being used by the public to fill in the gaps in AQ monitoring; however, LCS are not as accurate as EPA monitors. In this work, we investigate factors impacting the differences between an individual's true (unobserved) exposure to air pollution and the exposure reported by their nearest AQ instrument (which could be either an LCS or an EPA monitor). We use simulations based on California data to explore different combinations of hypothetical LCS placement strategies (e.g., at schools or near major roads), for different numbers of LCS, with varying plausible amounts of LCS device measurement errors. We illustrate how real-time AQ reporting could be improved (or, in some cases, worsened) by using LCS, both for the population overall and for marginalized communities specifically. This work has implications for the integration of LCS into real-time AQ reporting platforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...