Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 382(6667): eadf1226, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824650

ABSTRACT

The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.


Subject(s)
Brain , Neurogenesis , Pregnancy Trimester, First , Female , Humans , Pregnancy , Astrocytes/cytology , Brain/cytology , Brain/embryology , Neuroglia , Neurons/cytology , Atlases as Topic , Single-Cell Gene Expression Analysis
2.
Nat Neurosci ; 26(5): 891-901, 2023 05.
Article in English | MEDLINE | ID: mdl-37095395

ABSTRACT

The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.


Subject(s)
Ependymoma , Neural Stem Cells , Child , Female , Pregnancy , Humans , Spinal Cord , Ependymoma/genetics , Ependymoma/metabolism , Cell Differentiation/genetics , Neural Stem Cells/physiology , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics
3.
Nat Cell Biol ; 25(2): 351-365, 2023 02.
Article in English | MEDLINE | ID: mdl-36646791

ABSTRACT

The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.


Subject(s)
Embryo, Mammalian , Gene Expression Profiling , Humans , Cell Differentiation/genetics , Lung , Stem Cells
4.
J Mol Biol ; 434(15): 167606, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35489382

ABSTRACT

Recent development in inferring RNA velocity from single-cell RNA-seq opens up exciting new vista into developmental lineage and cellular dynamics. However, the estimated velocity only gives a snapshot of how the transcriptome instantaneously changes in individual cells, and it does not provide quantitative predictions and insights about the whole system. In this work, we develop RNA-ODE, a principled computational framework that extends RNA velocity to quantify systems level dynamics and improve single-cell data analysis. We model the gene expression dynamics by an ordinary differential equation (ODE) based formalism. Given a snapshot of gene expression at one time, RNA-ODE is able to predict and extrapolate the expression trajectory of each cell by solving the dynamic equations. Systematic experiments on simulations and on new data from developing brain demonstrate that RNA-ODE substantially improves many aspects of standard single-cell analysis. By leveraging temporal dynamics, RNA-ODE more accurately estimates cell state lineage and pseudo-time compared to previous state-of-the-art methods. It also infers gene regulatory networks and identifies influential genes whose expression changes can decide cell fate. We expect RNA-ODE to be a Swiss army knife that aids many facets of single-cell RNA-seq analysis.


Subject(s)
Gene Expression Regulation , Gene Regulatory Networks , RNA , Single-Cell Analysis , Algorithms , Cell Lineage , RNA/genetics , RNA-Seq , Single-Cell Analysis/methods
5.
Nat Med ; 27(3): 546-559, 2021 03.
Article in English | MEDLINE | ID: mdl-33654293

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) transmission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial-macrophage cross-talk, such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for therapeutic intervention.


Subject(s)
COVID-19/epidemiology , COVID-19/genetics , Host-Pathogen Interactions/genetics , SARS-CoV-2/physiology , Sequence Analysis, RNA/statistics & numerical data , Single-Cell Analysis/statistics & numerical data , Virus Internalization , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Cathepsin L/genetics , Cathepsin L/metabolism , Datasets as Topic/statistics & numerical data , Demography , Female , Gene Expression Profiling/statistics & numerical data , Humans , Lung/metabolism , Lung/virology , Male , Middle Aged , Organ Specificity/genetics , Respiratory System/metabolism , Respiratory System/virology , Sequence Analysis, RNA/methods , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Single-Cell Analysis/methods
6.
Cell ; 174(4): 999-1014.e22, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30096314

ABSTRACT

The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.


Subject(s)
Gene Expression Regulation, Developmental , Gene Regulatory Networks , Nervous System/metabolism , Single-Cell Analysis/methods , Transcriptome , Animals , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Male , Mice , Mice, Inbred C57BL , Nervous System/growth & development
7.
Nature ; 560(7719): 494-498, 2018 08.
Article in English | MEDLINE | ID: mdl-30089906

ABSTRACT

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.


Subject(s)
Brain/cytology , Neural Crest/metabolism , Neurons/cytology , RNA Splicing/genetics , RNA/analysis , RNA/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Brain/embryology , Brain/metabolism , Cell Lineage/genetics , Chromaffin Cells/cytology , Chromaffin Cells/metabolism , Datasets as Topic , Female , Glutamic Acid/metabolism , Hippocampus/cytology , Hippocampus/embryology , Hippocampus/metabolism , Kinetics , Male , Mice , Neural Crest/cytology , Neurons/metabolism , Reproducibility of Results , Time Factors , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...