Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters










Publication year range
1.
Plant Cell ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865437

ABSTRACT

Pyrimidine nucleotide monophosphate biosynthesis ends in the cytosol with uridine monophosphate (UMP). UMP phosphorylation to uridine diphosphate (UDP) by UMP KINASEs (UMKs) is required for the generation of all pyrimidine (deoxy)nucleoside triphosphates as building blocks for nucleic acids and central metabolites like UDP-glucose. The Arabidopsis (Arabidopsis thaliana) genome encodes five UMKs and three belong to the AMP KINASE (AMK)-like UMKs, which were characterized to elucidate their contribution to pyrimidine metabolism. Mitochondrial UMK2 and cytosolic UMK3 are evolutionarily conserved, whereas cytosolic UMK1 is specific to the Brassicaceae. In vitro, all UMKs can phosphorylate UMP, cytidine monophosphate (CMP) and deoxycytidine monophosphate (dCMP), but with different efficiencies. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-induced null mutants were generated for UMK1 and UMK2, but not for UMK3, since frameshift alleles were lethal for germline cells. However, a mutant with diminished UMK3 activity showing reduced growth was obtained. Metabolome analyses of germinating seeds and adult plants of single and higher-order mutants revealed that UMK3 plays an indispensable role in the biosynthesis of all pyrimidine (deoxy)nucleotides and UDP-sugars, while UMK2 is important for dCMP recycling that contributes to mitochondrial DNA stability. UMK1 is primarily involved in CMP recycling. We discuss the specific roles of these UMKs referring also to the regulation of pyrimidine nucleoside triphosphate synthesis.

2.
J Exp Bot ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38686677

ABSTRACT

During germination plants rely entirely on their seed storage compounds to provide energy and precursors for the synthesis of macromolecular structures until the seedling has emerged from the soil and photosynthesis can be established. Lupin seeds use proteins as their major storage compounds, accounting for up to 40% of the seed dry weight. Lupins are therefore a valuable complement to soy as a source of plant protein for human and animal nutrition. The aim of this study was to elucidate how storage protein metabolism is coordinated with other metabolic processes to meet the requirements of the growing seedling. In a quantitative approach, we analyzed seedling growth, as well as alterations in biomass composition, the proteome, and metabolite profiles during germination and seedling establishment in Lupinus albus. The reallocation of nitrogen resources from seed storage proteins to functional seed proteins was mapped based on a manually curated functional protein annotation database. Although classified as a protein crop, Lupinus albus does not use amino acids as a primary substrate for energy metabolism during germination. However, fatty acid and amino acid metabolism may be integrated at the level of malate synthase to combine stored carbon from lipids and proteins into gluconeogenesis.

3.
Mol Cell ; 84(5): 910-925.e5, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38428434

ABSTRACT

Chloroplasts contain a dedicated genome that encodes subunits of the photosynthesis machinery. Transcription of photosynthesis genes is predominantly carried out by a plastid-encoded RNA polymerase (PEP), a nearly 1 MDa complex composed of core subunits with homology to eubacterial RNA polymerases (RNAPs) and at least 12 additional chloroplast-specific PEP-associated proteins (PAPs). However, the architecture of this complex and the functions of the PAPs remain unknown. Here, we report the cryo-EM structure of a 19-subunit PEP complex from Sinapis alba (white mustard). The structure reveals that the PEP core resembles prokaryotic and nuclear RNAPs but contains chloroplast-specific features that mediate interactions with the PAPs. The PAPs are unrelated to known transcription factors and arrange around the core in a unique fashion. Their structures suggest potential functions during transcription in the chemical environment of chloroplasts. These results reveal structural insights into chloroplast transcription and provide a framework for understanding photosynthesis gene expression.


Subject(s)
DNA-Directed RNA Polymerases , RNA, Chloroplast , RNA, Chloroplast/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Plastids/genetics , Plastids/metabolism , Gene Expression Regulation, Plant , Transcription, Genetic
4.
Plant Physiol ; 195(1): 306-325, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38330164

ABSTRACT

Marine photosynthetic (micro)organisms drive multiple biogeochemical cycles and display a large diversity. Among them, the bloom-forming, free-living dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) stands out with its distinct cell biological features. Here, we obtained insights into the structural properties of the chloroplast and the photosynthetic machinery of P. cordatum using microscopic and proteogenomic approaches. High-resolution FIB/SEM analysis revealed a single large chloroplast (∼40% of total cell volume) with a continuous barrel-like structure, completely lining the inner face of the cell envelope and enclosing a single reticular mitochondrium, the Golgi apparatus, as well as diverse storage inclusions. Enriched thylakoid membrane fractions of P. cordatum were comparatively analyzed with those of the well-studied model-species Arabidopsis (Arabidopsis thaliana) using 2D BN DIGE. Strikingly, P. cordatum possessed a large photosystem-light harvesting megacomplex (>1.5 MDa), which is dominated by photosystems I and II (PSI, PSII), chloroplast complex I, and chlorophyll a-b binding light harvesting complex proteins. This finding parallels the absence of grana in its chloroplast and distinguishes from the predominant separation of PSI and PSII complexes in A. thaliana, indicating a different mode of flux balancing. Except for the core elements of the ATP synthase and the cytb6f-complex, the composition of the other complexes (PSI, PSII, and pigment-binding proteins, PBPs) of P. cordatum differed markedly from those of A. thaliana. Furthermore, a high number of PBPs was detected, accounting for a large share of the total proteomic data (∼65%) and potentially providing P. cordatum with flexible adaptation to changing light regimes.


Subject(s)
Chloroplasts , Dinoflagellida , Photosystem I Protein Complex , Photosystem II Protein Complex , Protozoan Proteins , Chloroplasts/ultrastructure , Dinoflagellida/genetics , Dinoflagellida/metabolism , Dinoflagellida/ultrastructure , Photosystem I Protein Complex/genetics , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Microscopy, Electron, Scanning , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Genome, Protozoan/genetics , Genetic Variation
5.
Trends Plant Sci ; 29(1): 64-71, 2024 01.
Article in English | MEDLINE | ID: mdl-37599162

ABSTRACT

The mitochondrial NADH-dehydrogenase complex of the respiratory chain, known as complex I, includes a carbonic anhydrase (CA) module attached to its membrane arm on the matrix side in protozoans, algae, and plants. Its physiological role is so far unclear. Recent electron cryo-microscopy (cryo-EM) structures show that the CA module may directly provide protons for translocation across the inner mitochondrial membrane at complex I. CAs can have a central role in adjusting the proton concentration in the mitochondrial matrix. We suggest that CA anchoring in complex I represents the original configuration to secure oxidative phosphorylation (OXPHOS) in the context of early endosymbiosis. After development of 'modern mitochondria' with pronounced cristae structures, this anchoring became dispensable, but has been retained in protozoans, algae, and plants.


Subject(s)
Carbonic Anhydrases , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Oxidative Phosphorylation , Mitochondria/metabolism , Plants/metabolism , Hydrogen-Ion Concentration
6.
J Exp Bot ; 75(3): 917-934, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37843921

ABSTRACT

Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.


Subject(s)
Arabidopsis , Pyrroles , Arabidopsis/metabolism , Proline Oxidase/chemistry , Proline Oxidase/metabolism , Mitochondria/metabolism , Glutamates/metabolism , Ornithine/metabolism , Proline/metabolism
7.
Plant Physiol ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060994

ABSTRACT

The mitochondrial proteome consists of numerous types of proteins which either are encoded and synthesized in the mitochondria, or encoded in the cell nucleus, synthesized in the cytoplasm and imported into the mitochondria. Their synthesis in the mitochondria, but not in the nucleus, relies on the editing of the primary transcripts of their genes at defined sites. Here, we present an in-depth investigation of the mitochondrial proteome of Arabidopsis (Arabidopsis thaliana) and a public online platform for the exploration of the data. For the analysis of our shotgun proteomic data, an Arabidopsis sequence database was created comprising all available protein sequences from the TAIR10 and Araport11 databases, supplemented with sequences of proteins translated from edited and non-edited transcripts of mitochondria. Amino acid sequences derived from partially edited transcripts were also added to analyze proteins encoded by the mitochondrial genome. Proteins were digested in parallel with six different endoproteases to obtain maximum proteome coverage. The resulting peptide fractions were finally analyzed using liquid chromatography (LC) coupled to ion mobility spectrometry (IMS) and tandem mass spectrometry (MS/MS). We generated a 'deep mitochondrial proteome' of 4,692 proteins. 1,339 proteins assigned to mitochondria by the SUBA5 database (https://suba.live) accounted for >80% of the total protein mass of our fractions. The coverage of proteins by identified peptides was particularly high compared to single-protease digests, allowing the exploration of differential splicing and RNA editing events at the protein level. We show that proteins translated from non-edited transcripts can be incorporated into native mitoribosomes and the ATP synthase complex. We present a portal for the use of our data, based on 'proteomaps' with directly linked protein data. The portal is available at www.proteomeexplorer.de.

8.
Front Plant Sci ; 14: 1193122, 2023.
Article in English | MEDLINE | ID: mdl-37484460

ABSTRACT

The hemiparasitic flowering plant Viscum album (European mistletoe) is known for its very special life cycle, extraordinary biochemical properties, and extremely large genome. The size of its genome is estimated to be 30 times larger than the human genome and 600 times larger than the genome of the model plant Arabidopsis thaliana. To achieve insights into the Gene Space of the genome, which is defined as the space including and surrounding protein-coding regions, a transcriptome project based on PacBio sequencing has recently been conducted. A database resulting from this project contains sequences of 39,092 different open reading frames encoding 32,064 distinct proteins. Based on 'Benchmarking Universal Single-Copy Orthologs' (BUSCO) analysis, the completeness of the database was estimated to be in the range of 78%. To further develop this database, we performed a transcriptome project of V. album organs harvested in summer and winter based on Illumina sequencing. Data from both sequencing strategies were combined. The new V. album Gene Space database II (VaGs II) contains 90,039 sequences and has a completeness of 93% as revealed by BUSCO analysis. Sequences from other organisms, particularly fungi, which are known to colonize mistletoe leaves, have been removed. To evaluate the quality of the new database, proteome data of a mitochondrial fraction of V. album were re-analyzed. Compared to the original evaluation published five years ago, nearly 1000 additional proteins could be identified in the mitochondrial fraction, providing new insights into the Oxidative Phosphorylation System of V. album. The VaGs II database is available at https://viscumalbum.pflanzenproteomik.de/. Furthermore, all V. album sequences have been uploaded at the European Nucleotide Archive (ENA).

9.
mSphere ; 8(4): e0003823, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37358287

ABSTRACT

The marine, bloom-forming dinoflagellate Prorocentrum cordatum CCMP 1329 (formerly P. minimum) has a genome atypical of eukaryotes, with a large size of ~4.15 Gbp, organized in plentiful, highly condensed chromosomes and packed in a dinoflagellate-specific nucleus (dinokaryon). Here, we apply microscopic and proteogenomic approaches to obtain new insights into this enigmatic nucleus of axenic P. cordatum. High-resolution focused ion beam/scanning electron microscopy analysis of the flattened nucleus revealed highest density of nuclear pores in the vicinity of the nucleolus, a total of 62 tightly packed chromosomes (~0.4-6.7 µm3), and interaction of several chromosomes with the nucleolus and other nuclear structures. A specific procedure for enriching intact nuclei was developed to enable proteomic analyses of soluble and membrane protein-enriched fractions. These were analyzed with geLC and shotgun approaches employing ion-trap and timsTOF (trapped-ion-mobility-spectrometry time-of-flight) mass spectrometers, respectively. This allowed identification of 4,052 proteins (39% of unknown function), out of which 418 were predicted to serve specific nuclear functions; additional 531 proteins of unknown function could be allocated to the nucleus. Compaction of DNA despite very low histone abundance could be accomplished by highly abundant major basic nuclear proteins (HCc2-like). Several nuclear processes including DNA replication/repair and RNA processing/splicing can be fairly well explained on the proteogenomic level. By contrast, transcription and composition of the nuclear pore complex remain largely elusive. One may speculate that the large group of potential nuclear proteins with currently unknown functions may serve yet to be explored functions in nuclear processes differing from those of typical eukaryotic cells. IMPORTANCE Dinoflagellates form a highly diverse group of unicellular microalgae. They provide keystone species for the marine ecosystem and stand out among others by their very large, unusually organized genomes embedded in the nuclei markedly different from other eukaryotic cells. Functional insights into nuclear and other cell biological structures and processes of dinoflagellates have long been hampered by the paucity of available genomic sequences. The here studied cosmopolitan P. cordatum belongs to the harmful algal bloom-forming, marine dinoflagellates and has a recently de novo assembled genome. We present a detailed 3D reconstruction of the P. cordatum nucleus together with comprehensive proteogenomic insights into the protein equipment mastering the broad spectrum of nuclear processes. This study significantly advances our understanding of mechanisms and evolution of the conspicuous dinoflagellate cell biology.


Subject(s)
Dinoflagellida , Dinoflagellida/genetics , Proteomics/methods , Ecosystem , Cell Nucleus , Nuclear Proteins/metabolism
10.
Plant Physiol ; 191(4): 2185-2203, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36691154

ABSTRACT

Mitochondria are often considered as the power stations of the cell, playing critical roles in various biological processes such as cellular respiration, photosynthesis, stress responses, and programmed cell death. To maintain the structural and functional integrities of mitochondria, it is crucial to achieve a defined membrane lipid composition between different lipid classes wherein specific proportions of individual lipid species are present. Although mitochondria are capable of self-synthesizing a few lipid classes, many phospholipids are synthesized in the endoplasmic reticulum and transferred to mitochondria via membrane contact sites, as mitochondria are excluded from the vesicular transportation pathway. However, knowledge on the capability of lipid biosynthesis in mitochondria and the precise mechanism of maintaining the homeostasis of mitochondrial lipids is still scarce. Here we describe the lipidome of mitochondria isolated from Arabidopsis (Arabidopsis thaliana) leaves, including the molecular species of glycerolipids, sphingolipids, and sterols, to depict the lipid landscape of mitochondrial membranes. In addition, we define proteins involved in lipid metabolism by proteomic analysis and compare our data with mitochondria from cell cultures since they still serve as model systems. Proteins putatively localized to the membrane contact sites are proposed based on the proteomic results and online databases. Collectively, our results suggest that leaf mitochondria are capable-with the assistance of membrane contact site-localized proteins-of generating several lipid classes including phosphatidylethanolamines, cardiolipins, diacylgalactosylglycerols, and free sterols. We anticipate our work to be a foundation to further investigate the functional roles of lipids and their involvement in biochemical reactions in plant mitochondria.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Lipidomics , Proteomics , Mitochondria/metabolism , Phospholipids/metabolism , Sterols , Plant Leaves/metabolism
11.
Nat Plants ; 9(1): 142-156, 2023 01.
Article in English | MEDLINE | ID: mdl-36585502

ABSTRACT

Protein complexes of the mitochondrial respiratory chain assemble into respiratory supercomplexes. Here we present the high-resolution electron cryo-microscopy structure of the Arabidopsis respiratory supercomplex consisting of complex I and a complex III dimer, with a total of 68 protein subunits and numerous bound cofactors. A complex I-ferredoxin, subunit B14.7 and P9, a newly defined subunit of plant complex I, mediate supercomplex formation. The component complexes stabilize one another, enabling new detailed insights into their structure. We describe (1) an interrupted aqueous passage for proton translocation in the membrane arm of complex I; (2) a new coenzyme A within the carbonic anhydrase module of plant complex I defining a second catalytic centre; and (3) the water structure at the proton exit pathway of complex III2 with a co-purified ubiquinone in the QO site. We propose that the main role of the plant supercomplex is to stabilize its components in the membrane.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Cryoelectron Microscopy , Electron Transport Complex III/metabolism , Protons , Electron Transport Complex I/chemistry , Electron Transport Complex I/metabolism
12.
Plant Physiol ; 190(3): 1896-1914, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35976139

ABSTRACT

European mistletoe (Viscum album) is known for its special mode of cellular respiration. It lacks the mitochondrial NADH dehydrogenase complex (Complex I of the respiratory chain) and has restricted capacities to generate mitochondrial adenosine triphosphate (ATP). Here, we present an investigation of the V. album energy metabolism taking place in chloroplasts. Thylakoids were purified from young V. album leaves, and membrane-bound protein complexes were characterized by Blue native polyacrylamide gel electrophoresis as well as by the complexome profiling approach. Proteins were systematically identified by label-free quantitative shotgun proteomics. We identified >1,800 distinct proteins (accessible at https://complexomemap.de/va_leaves), including nearly 100 proteins forming part of the protein complexes involved in the light-dependent part of photosynthesis. The photosynthesis apparatus of V. album has distinct features: (1) comparatively low amounts of Photosystem I; (2) absence of the NDH complex (the chloroplast pendant of mitochondrial Complex I involved in cyclic electron transport (CET) around Photosystem I); (3) reduced levels of the proton gradient regulation 5 (PGR5) and proton gradient regulation 5-like 1 (PGRL1) proteins, which offer an alternative route for CET around Photosystem I; (4) comparable amounts of Photosystem II and the chloroplast ATP synthase complex to other seed plants. Our data suggest a restricted capacity for chloroplast ATP biosynthesis by the photophosphorylation process. This is in addition to the limited ATP supply by the mitochondria. We propose a view on mistletoe's mode of life, according to which its metabolism relies to a greater extent on energy-rich compounds provided by the host trees.


Subject(s)
Arabidopsis Proteins , Viscum album , Photosystem I Protein Complex/metabolism , Viscum album/metabolism , Arabidopsis Proteins/metabolism , Protons , Photosynthesis , Electron Transport , Chloroplasts/metabolism , Electron Transport Complex I/metabolism , Adenosine Triphosphate/metabolism
13.
Funct Plant Biol ; 49(7): 613-624, 2022 06.
Article in English | MEDLINE | ID: mdl-35190022

ABSTRACT

Natural variability of stress tolerance in halophytic plants is of significance both ecologically and in view of identifying molecular traits for salt tolerance in plants. Using ecophysiological and proteomic analyses, we address these phenomena in two Tunisian accessions of the oilseed halophyte, Cakile maritima Scop., thriving on arid and semi-arid Mediterranean bioclimatic stages (Djerba and Raoued, respectively), with a special emphasis on the leaves. Changes in biomass, photosynthetic gas exchange and pigment concentrations in C. maritima plants treated with three salinity levels (0, 100 and 300mM NaCl) were monitored for 1month. Comparative two-dimensional gel electrophoresis (2-DE) revealed 94 and 56 proteins of differential abundance in Raoued and Djerba accessions, respectively. These salinity-responsive proteins were mainly related to photosynthesis and oxidative phosphorylation (OXPHOS). Although Djerba accession showed a lower biomass productivity, it showed a slightly higher CO2 assimilation rate than Raoued accession when salt-treated. Photosynthesis impairment in both accessions under salinity was also suggested by the lower abundance of proteins involved in Calvin cycle and electron transfer. A significant increase of protein spots involved in the OXPHOS system was found in Djerba accession, suggesting an increase in mitochondrial respiration for increased ATP production under saline conditions, whereas a lesser pronounced trend was observed for Raoued accession. The latter showed in addition higher abundance of proteins involved in photorespiration. Salt-challenged plants of Djerba also likely developed mechanisms for scavenging ROS in leaves as shown by the increase in superoxide dismutase and thioredoxin, while an opposite trend was found in Raoued.


Subject(s)
Brassicaceae , Salt-Tolerant Plants , Brassicaceae/metabolism , Plant Leaves/metabolism , Proteome/metabolism , Proteomics , Salt-Tolerant Plants/genetics
14.
Plant Cell Rep ; 41(2): 431-446, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35031834

ABSTRACT

KEY MESSAGE: The functional absence of the electron-transfer flavoprotein: ubiquinone oxidoreductase (ETFQO) directly impacts electrons donation to the mitochondrial electron transport chain under carbohydrate-limiting conditions without major impacts on the respiration of cell cultures. Alternative substrates (e.g., amino acids) can directly feed electrons into the mitochondrial electron transport chain (mETC) via the electron transfer flavoprotein/electron-transfer flavoprotein: ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports plant respiration during stress situations. By using a cell culture system, here we investigated the responses of Arabidopsis thaliana mutants deficient in the expression of ETFQO (etfqo-1) following carbon limitation and supplied with amino acids. Our results demonstrate that isovaleryl-CoA dehydrogenase (IVDH) activity was induced during carbon limitation only in wild-type and that these changes occurred concomit with enhanced protein content. By contrast, neither the activity nor the total amount of IVDH was altered in etfqo-1 mutants. We also demonstrate that the activities of mitochondrial complexes in etfqo-1 mutants, display a similar pattern as in wild-type cells. Our findings suggest that the defect of ETFQO protein culminates with an impaired functioning of the IVDH, since no induction of IVDH activity was observed. However, the functional absence of the ETFQO seems not to cause major impacts on plant respiration under carbon limiting conditions, most likely due to other alternative electron entry pathways.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Electron-Transferring Flavoproteins , Amino Acids, Branched-Chain/pharmacology , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbohydrate Metabolism , Cell Culture Techniques , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Gene Expression Regulation, Plant , Isovaleryl-CoA Dehydrogenase/genetics , Isovaleryl-CoA Dehydrogenase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mutation
15.
Methods Mol Biol ; 2363: 101-110, 2022.
Article in English | MEDLINE | ID: mdl-34545489

ABSTRACT

Most molecular functions depend on defined associations of proteins. Protein-protein interactions may be transient or long-lasting; they may lead to labile assemblies or more stable particles termed protein complexes. Studying protein-protein interactions is of prime importance for understanding molecular functions in cells. The complexome profiling approach allows to systematically analyze protein assemblies of cells or subcellular compartments. It combines separation of intact protein fractions by blue native (BN) polyacrylamide gel electrophoresis (PAGE) and protein identification as well as quantification by mass spectrometry. Complexome profiling has been successfully applied to characterize mitochondrial fractions of plants. In a typical experiment, more than 1000 mitochondrial proteins are identified and assigned to defined protein assemblies. It allows discovering so far unknown protein complexes, studying assembly pathways of protein complexes and even characterizing labile super- and megacomplexes in the >10 mega-Dalton range. We here present a complexome profiling protocol for the straightforward definition of the protein complex inventory of mitochondria or other subcellular compartments from plants.


Subject(s)
Mitochondria , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Mitochondrial Proteins/genetics , Native Polyacrylamide Gel Electrophoresis
16.
Plant J ; 109(1): 278-294, 2022 01.
Article in English | MEDLINE | ID: mdl-34713513

ABSTRACT

European mistletoe (Viscum album) is a hemiparasitic flowering plant that is known for its very special life cycle and extraordinary biochemical properties. Particularly, V. album has an unusual mode of cellular respiration that takes place in the absence of mitochondrial complex I. However, insights into the molecular biology of V. album so far are very limited. Since the genome of V. album is extremely large (estimated 600 times larger than the genome of the model plant Arabidopsis thaliana) it has not been sequenced up to now. We here report sequencing of the V. album gene space (defined as the space including and surrounding genic regions, encompassing coding as well as 5' and 3' non-coding regions). mRNA fractions were isolated from different V. album organs harvested in summer or winter and were analyzed via single-molecule real-time sequencing. We determined sequences of 39 092 distinct open reading frames encoding 32 064 V. album proteins (designated V. album protein space). Our data give new insights into the metabolism and molecular biology of V. album, including the biosynthesis of lectins and viscotoxins. The benefits of the V. album gene space information are demonstrated by re-evaluating mass spectrometry-based data of the V. album mitochondrial proteome, which previously had been evaluated using the A. thaliana genome sequence. Our re-examination allowed the additional identification of nearly 200 mitochondrial proteins, including four proteins related to complex I, which all have a secondary function not related to respiratory electron transport. The V. album gene space sequences are available at the NCBI.


Subject(s)
Electron Transport Complex I/metabolism , Lectins/metabolism , Plant Proteins/metabolism , Viscum album/genetics , Electron Transport , Electron Transport Complex I/genetics , Mitochondria/metabolism , Viscum album/metabolism
18.
Plant Physiol Biochem ; 166: 177-190, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34116337

ABSTRACT

Plants native to extreme habitats often face changes in environmental conditions such as salinity level and water availability. In response, plants have evolved efficient mechanisms allowing them to survive or recover. In the present work, effects of high salinity and salt-stress release were studied on the halophyte Cakile maritima. Four week-old plants were either cultivated at 0 mM NaCl or 200 mM NaCl. After one month of treatment, plants were further irrigated at either 0 mM NaCl, 200 mM NaCl, or rewatered to 0 mM NaCl (stress release). Upon salt stress, C. maritima plants exhibited reduced biomass production and shoot hydration which were associated with a decrease in the amount of chlorophyll a and b. However, under the same stressful conditions a significant increase of anthocyanin and malonyldialdehyde concentrations was noticed. Salt-stressed plants were able to maintain stable protein complexes of thylakoid membranes. Measurement of chlorophyll fluorescence and P700 redox state showed that PSI was more susceptible for damage by salinity than PSII. PSII machinery was significantly enhanced under saline conditions. All measured parameters were partially restored under salt-stress release conditions. Photoinhibition of PSI was also reversible and C. maritima was able to successfully re-establish PSI machinery indicating the high contribution of chloroplasts in salt tolerance mechanisms of C. maritima. Overall, to overcome high salinity stress, C. maritima sets a cascade of physio-biochemical and molecular pathways. Chloroplasts seem to act as metabolic centers as part of this adaptive process enabling growth restoration in this halophyte following salt stress release.


Subject(s)
Brassicaceae , Salt-Tolerant Plants , Chlorophyll , Chlorophyll A , Salinity , Thylakoids
19.
Biochim Biophys Acta Bioenerg ; 1862(8): 148443, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33965424

ABSTRACT

Mitochondrial biology is underpinned by the presence and activity of large protein assemblies participating in the organelle-located steps of respiration, TCA-cycle, glycine oxidation, and oxidative phosphorylation. While the enzymatic roles of these complexes are undisputed, little is known about the interactions of the subunits beyond their presence in these protein complexes and their functions in regulating mitochondrial metabolism. By applying one of the most important regulatory cues for plant metabolism, the presence or absence of light, we here assess changes in the composition and molecular mass of protein assemblies involved in NADH-production in the mitochondrial matrix and in oxidative phosphorylation by employing a differential complexome profiling strategy. Covering a mass up to 25 MDa, we demonstrate dynamic associations of matrix enzymes and of components involved in oxidative phosphorylation. The data presented here form the basis for future studies aiming to advance our understanding of the role of protein:protein interactions in regulating plant mitochondrial functions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Plant Leaves/metabolism , Proteome/radiation effects , Arabidopsis/growth & development , Arabidopsis/radiation effects , Light , Mitochondria/radiation effects , Oxidative Phosphorylation , Plant Leaves/growth & development , Plant Leaves/radiation effects , Protein Interaction Domains and Motifs
20.
Plant Cell ; 33(6): 2072-2091, 2021 07 19.
Article in English | MEDLINE | ID: mdl-33768254

ABSTRACT

Mitochondrial complex I is the main site for electron transfer to the respiratory chain and generates much of the proton gradient across the inner mitochondrial membrane. Complex I is composed of two arms, which form a conserved L-shape. We report the structures of the intact, 47-subunit mitochondrial complex I from Arabidopsis thaliana and the 51-subunit complex I from the green alga Polytomella sp., both at around 2.9 Šresolution. In both complexes, a heterotrimeric γ-carbonic anhydrase domain is attached to the membrane arm on the matrix side. Two states are resolved in A. thaliana complex I, with different angles between the two arms and different conformations of the ND1 (NADH dehydrogenase subunit 1) loop near the quinol binding site. The angle appears to depend on a bridge domain, which links the peripheral arm to the membrane arm and includes an unusual ferredoxin. We propose that the bridge domain participates in regulating the activity of plant complex I.


Subject(s)
Arabidopsis/chemistry , Chlorophyta/chemistry , Electron Transport Complex I/chemistry , Ferredoxins/chemistry , Plant Proteins/chemistry , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism , Carbonic Anhydrases/chemistry , Carbonic Anhydrases/metabolism , Cryoelectron Microscopy , Electron Transport Complex I/metabolism , Ferredoxins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Models, Molecular , Plant Proteins/metabolism , Protein Domains , Protein Subunits , Ubiquinone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...